Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 17535, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845229

ABSTRACT

An efficient thermal-structural numerical solver for Additive Manufacturing has been developed based on a modified Lagrangian approach to solve the energy conservation equations in differential form. The heat transfer is modeled using the finite difference method applied to a deforming Lagrangian mesh. The structural solver has been enhanced with the proposed effective quasi-elastic differential approach for modeling the elastoplastic behavior of materials. The algorithm is relatively simple to implement yet is highly effective. The solver can predict shape deformations of metal parts printed using the laser powder bed fusion technique. The second key capability of the solver is the auto-compensation of distortions of 3D-printed parts by proposing a corrected geometry of a surface to be printed, in order to ensure minimal deviation of the actual printed part from the desired one, even under non-optimal operating conditions or for complex shapes. All the simulation results have been verified in real-life experiments for 3D parts of sizes ranging from 10 to 15 mm up to 40 mm.

2.
Polymers (Basel) ; 15(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37376340

ABSTRACT

The musculoskeletal system, consisting of bones and cartilage of various types, muscles, ligaments, and tendons, is the basis of the human body. However, many pathological conditions caused by aging, lifestyle, disease, or trauma can damage its elements and lead to severe disfunction and significant worsening in the quality of life. Due to its structure and function, articular (hyaline) cartilage is the most susceptible to damage. Articular cartilage is a non-vascular tissue with constrained self-regeneration capabilities. Additionally, treatment methods, which have proven efficacy in stopping its degradation and promoting regeneration, still do not exist. Conservative treatment and physical therapy only relieve the symptoms associated with cartilage destruction, and traditional surgical interventions to repair defects or endoprosthetics are not without serious drawbacks. Thus, articular cartilage damage remains an urgent and actual problem requiring the development of new treatment approaches. The emergence of biofabrication technologies, including three-dimensional (3D) bioprinting, at the end of the 20th century, allowed reconstructive interventions to get a second wind. Three-dimensional bioprinting creates volume constraints that mimic the structure and function of natural tissue due to the combinations of biomaterials, living cells, and signal molecules to create. In our case-hyaline cartilage. Several approaches to articular cartilage biofabrication have been developed to date, including the promising technology of 3D bioprinting. This review represents the main achievements of such research direction and describes the technological processes and the necessary biomaterials, cell cultures, and signal molecules. Special attention is given to the basic materials for 3D bioprinting-hydrogels and bioinks, as well as the biopolymers underlying the indicated products.

3.
Polymers (Basel) ; 15(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36904401

ABSTRACT

In this study, the mechanical as well as thermomechanical behaviors of shape memory PLA parts are presented. A total of 120 sets with five variable printing parameters were printed by the FDM method. The impact of the printing parameters on the tensile strength, viscoelastic performance, shape fixity, and recovery coefficients were studied. The results show that two printing parameters, the temperature of the extruder and the nozzle diameter, were more significant for the mechanical properties. The values of tensile strength varied from 32 MPa to 50 MPa. The use of a suitable Mooney-Rivlin model to describe the hyperelastic behavior of the material allowed us to gain a good fit for the experimental and simulation curves. For the first time, using this material and method of 3D printing, the thermomechanical analysis (TMA) allowed us to evaluate the thermal deformation of the sample and obtain values of the coefficient of thermal expansion (CTE) at different temperatures, directions, and running curves from 71.37 ppm/K to 276.53 ppm/K. Dynamic mechanical analysis (DMA) showed a similar characteristic of curves and similar values with a deviation of 1-2% despite different printing parameters. The glass transition temperature for all samples with different measurement curves ranged from 63-69 °C. A material crystallinity of 2.2%, considered by differential scanning calorimetry (DSC), confirmed its amorphous nature. From the SMP cycle test, we observed that the stronger the sample, the lower the fatigue from cycle to cycle observed when restoring the initial shape after deformation, while the fixation of the shape did not almost decrease with each SMP cycle and was close to 100%. Comprehensive study demonstrated a complex operational relationship between determined mechanical and thermomechanical properties, combining the characteristics of a thermoplastic material with the shape memory effect and FDM printing parameters.

4.
Micron ; 166: 103399, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36634433

ABSTRACT

High-entropy alloys (HEAs) are promoted as promising materials for various applications, including those dealing with high-temperatures. It requires understanding of the oxidation at different temperatures, especially for such a technological process as additive manufacturing (AM), which is able to produce unique structure. The present work evaluates the oxidation resistance of the CrFeCoNiAl HEAs produced by AM of the blends of CrFeCoNi and Al powders at temperatures of 800 and 1000 â„ƒ. Al forms the Al2O3 under the top Cr2O3 layer and prevents the delamination of the oxide scale at considered temperatures. Oxygen diffusion mainly occurs homogeneously through the columnar grain boundaries typical for AM materials. AlN precipitates under the Al2O3 formations were observed for the sample with the highest aluminium concentration due to dissolution of nitrogen in the as-built material.

5.
Materials (Basel) ; 15(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36233888

ABSTRACT

Laser Powder Bed Fusion (LPBF) technology is a new trend in manufacturing complex geometric structures from metals. This technology allows producing topologically optimized parts for aerospace, medical and industrial sectors where a high performance-to-weight ratio is required. Commonly the feature size for such applications is higher than 300-400 microns. However, for several possible applications of LPBF technology, for example, microfluidic devices, stents for coronary vessels, porous filters, dentistry, etc., a significant increase in the resolution is required. This work is aimed to study the resolution factors of LPBF technology for the manufacturing of superelastic instruments for endodontic treatment, namely Self-Adjusting Files (SAF). Samples of thin walls with different incline angles and SAF samples were manufactured from Nickel-Titanium pre-alloyed powder with a 15-45 µm fraction. The printing procedure was done using an LPBF set-up equipped with a conventional ytterbium fiber laser with a nominal laser spot diameter of 55 microns. The results reveal physical, apparatus, and software factors limiting the resolution of the LPBF technology. Additionally, XRD and DSC tests were done to study the effect of single track based scanning mode manufacturing on the phase composition and phase transformation temperatures. Found combination of optimal process parameters including laser power of 100 W, scanning speed of 850 mm/s, and layer thickness of 20 µm was suitable for manufacturing SAF files with the required resolution. The results will be helpful for the production of NiTi micro objects based on periodic structures both by the LPBF and µLPBF methods.

6.
Materials (Basel) ; 15(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36013736

ABSTRACT

Due to the ability to create structures with complex geometry at micro- and nanoscales, modern additive technologies make it possible to produce artificial materials (metamaterials) with properties different from those of conventional materials found in nature. One of the classes with special properties is auxetic materials-materials with a negative Poisson's ratio. In the review, we collect research results on the properties of auxetics, based on analytical, experimental and numerical methods. Special attention of this review is paid to the consideration of the results obtained in studies of hierarchical auxetic materials. The wide interest in the hierarchical subclass of auxetics is explained by the additional advantages of structures, such as more flexible adjustment of the desired mechanical characteristics (the porosity, stiffness, specific energy absorption, degree of material release, etc.). Possibilities of biomedical applications of hierarchical auxetic materials, such as coronary stents, filtration and drug delivery systems, implants and many others, where the ability for high-precision tuning is required, are underlined.

7.
Materials (Basel) ; 15(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35160767

ABSTRACT

Functional Graded Structures and Functional Graded parts, made using dissimilar materials, are designed to provide specific properties to the final product. One of the most promising methods for manufacturing 3D Functional Graded objects is 3D laser cladding and/or direct energy deposition. However, the construction of graded and especially layered graded structures in the process of joining materials with different thermophysical properties under certain conditions is accompanied by the formation of cracks along the phase boundaries, which are a consequence of residual stresses and/or chemical segregations. The conditions for phase consolidation are macroscopic balancing of residual stresses in the region of the interface. In a broader sense, in the field of the interface, it is necessary to consider the thermodynamic equilibrium of the phases in connection with mechanical equilibrium. In this regard, the article proposed criteria for the thermodynamic affinity of phases in the area of the Functional Graded Structures interface, including the coefficients of thermal expansion and isobaric and isochoric heat capacities of the phases. Examples of cracking and the use of the obtained criteria are provided.

8.
Materials (Basel) ; 15(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35160901

ABSTRACT

The additive manufacturing of BaTiO3 (BT) ceramics through stereolithography (SLA) 3D printing at 465 nm wavelength was demonstrated. After different milling times, different paste compositions with varied initial micron-sized powders were studied to find a composition suitable for 3D printing. The pastes were evaluated in terms of photopolymerization depth depending on the laser scanning speed. Furthermore, the microstructure and properties of the BT ceramic samples produced through SLA 3D printing were characterized and compared with those of ceramics fabricated through a conventional die semi-drying pressing method. Three-dimensional printed samples achieved relative densities over 0.95 and microhardness over 500 HV after sintering, nearly matching the relative density and microhardness attained by the pressed samples. Upon poling, the 3D-printed samples attained acceptable piezoelectric module d33 = 148 pC/N and dielectric constants over 2000. At near full density, BT piezoceramics were successfully fabricated through SLA 3D printing at 465 nm wavelength, achieving photopolymerization depth of more than 100 microns. This work paves the relatively low-cost way for 3D printing of piezoelectric ceramics using conventional micron-sized powders and high printed layer thickness.

9.
Materials (Basel) ; 14(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885640

ABSTRACT

Unique functional properties such as the low stiffness, superelasticity, and biocompatibility of nickel-titanium shape-memory alloys provide many applications for such materials. Selective laser melting of NiTi enables low-cost customization of devices and the manufacturing of highly complex geometries without subsequent machining. However, the technology requires optimization of process parameters in order to guarantee high mass density and to avoid deterioration of functional properties. In this work, the melt pool geometry, surface morphology, formation mode, and thermal behavior were studied. Multiple combinations of laser power and scanning speed were used for single-track preparation from pre-alloyed NiTi powder on a nitinol substrate. The experimental results show the influence of laser power and scanning speed on the depth, width, and depth-to-width aspect ratio. Additionally, a transient 3D FE model was employed to predict thermal behavior in the melt pool for different regimes. In this paper, the coefficients for a volumetric double-ellipsoid heat source were calibrated with bound optimization by a quadratic approximation algorithm, the design of experiments technique, and experimentally obtained data. The results of the simulation reveal the necessary conditions of transition from conduction to keyhole mode welding. Finally, by combining experimental and FE modeling results, the optimal SLM process parameters were evaluated as P = 77 W, V = 400 mm/s, h = 70 µm, and t = 50 µm, without printing of 3D samples.

10.
Materials (Basel) ; 13(24)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322513

ABSTRACT

The paper is devoted to the direct energy deposition (DED) of functionally graded materials (FGMs) created from stainless steel and aluminum bronze with 10% content of Al and 1% of Fe. The results of the microstructure analysis using scanning electronic microscopy (SEM) demonstrate the existence of a dendritic structure in the specimens. The crystallization rate of the gradient binary Cu-Fe system structures was investigated and calculated using the model of a fast-moving concentrated source with an ellipsoid crystallization front. The width of the secondary elements of the dendrites in the crystallized slab was numerically estimated as 0.2 nm at the center point of the circle heat spot, and the two types of dendrites were predicted in the specimen: the dendrites from 0.2 to approximately 50 nm and from approximately 0.1 to 0.3 µm in width of the secondary elements. The results were found to be in good accordance with the measured experimental values of the dendritic structure geometry parameters.

11.
J Nanosci Nanotechnol ; 13(2): 1440-3, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23646656

ABSTRACT

Selective laser sintering (SLS) was used to prepare porous polymer nanocomposites comprising of a polycarbonate (PC) matrix doped with 30-50 wt% nano Ni or/and 10-30 wt% nano Cu. The electrical conductivity was measured at f = 1 MHz, bias dc voltage 40 V, and 300-400 K. Magnetic measurements were carried out at r.t. in magnetic fields of up to 10 kOe. Temperature dependence of electrophysical properties was studied for 3D samples derived from PC-Cu powders. Magnetic properties were measured for alternating ferromagnetic/non-magnetic layers with Ni and/or Cu core/polymer shell structures. Temperature dependencies for a real part of a dielectric permeability, loss tangent, and magnetization were found to have a hysteresis character. The structure of sintered items was found to depend of external dc magnetic field.

SELECTION OF CITATIONS
SEARCH DETAIL
...