Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vavilovskii Zhurnal Genet Selektsii ; 25(1): 117-124, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34901709

ABSTRACT

There are more than 30 inherited human disorders connected with repeat expansion (myotonic dystrophy type I, Huntington's disease, Fragile X syndrome). Fragile X syndrome is the most common reason for inherited intellectual disability in the human population. The ways of the expansion development remain unclear. An important feature of expanded repeats is the ability to form stable alternative DNA secondary structures. There are hypotheses about the nature of repeat instability. It is proposed that these DNA secondary structures can block various stages of DNA metabolism processes, such as replication, repair and recombination and it is considered as the source of repeat instability. However, none of the hypotheses is fully confirmed or is the only valid one. Here, an experimental system for studying (CGG)n repeat expansion associated with transcription and TCR-NER is proposed. It is noteworthy that the aberrations of transcription are a poorly studied mechanism of (CGG)n instability. However, the proposed systems take into account the contribution of other processes of DNA metabolism and, therefore, the developed systems are universal and applicable for various studies. Transgenic cell lines carrying a repeat of normal or premutant length under the control of an inducible promoter were established and a method for repeat instability quantification was developed. One type of the cell lines contains an exogenous repeat integrated into the genome by the Sleeping Beauty transposon; in another cell line, the vector is maintained as an episome due to the SV40 origin of replication. These experimental systems can serve for finding the causes of instability and the development of therapeutic agents. In addition, a criterion was developed for the quantification of exogenous (CGG)n repeat instability in the transgenic cell lines' genome.

2.
Stem Cell Res ; 57: 102615, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34864218

ABSTRACT

Trinucleotide repeat expansion diseases such as fragile X syndrome are of great interest to study since the mechanism of its development is still unknown. IPS cell lines are some of the most convenient models for studying. The ICGi032-A iPS cell line was obtained from the peripheral blood mononuclear cells of the patient affected with fragile X syndrome. ICGi032-A iPS cell line have a normal karyotype, expression of pluripotency markers and can differentiate in vitro into the cells of three germ layers.

3.
Stem Cell Res ; 49: 102070, 2020 12.
Article in English | MEDLINE | ID: mdl-33189043

ABSTRACT

Expansion over 200 CGG repeats in FMR1 gene causes inherited intellectual disability or autism spectrum disorder named as fragile X syndrome. Despite the known cause fragile X syndrome pathogenesis has not been specified yet. The ICGi026-A iPSCs line was obtained by the reprogramming of the peripheral blood mononuclear cells from a 9-year-old boy with fragile X syndrome. The ICGi026-A iPSCs expressed pluripotency markers, had a normal male karyotype (46, XY) and had the capacity to in vivo differentiate into the cells of three germ layers.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Induced Pluripotent Stem Cells , Child , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Humans , Leukocytes, Mononuclear , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...