Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Hepatology ; 78(4): 1035-1049, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37078450

ABSTRACT

BACKGROUND AND AIMS: Although a dysregulated type 1 immune response is integral to the pathogenesis of biliary atresia, studies in both humans and mice have uncovered a type 2 response, primarily driven by type 2 innate lymphoid cells. In nonhepatic tissues, natural type 2 innate lymphoid cell (nILC2s) regulate epithelial proliferation and tissue repair, whereas inflammatory ILC2s (iIlC2s) drive tissue inflammation and injury. The aim of this study is to determine the mechanisms used by type 2 innate lymphoid cell (ILC2) subpopulations to regulate biliary epithelial response to an injury. APPROACH AND RESULTS: Using Spearman correlation analysis, nILC2 transcripts, but not those of iILC2s, are positively associated with cholangiocyte abundance in biliary atresia patients at the time of diagnosis. nILC2s are identified in the mouse liver through flow cytometry. They undergo expansion and increase amphiregulin production after IL-33 administration. This drives epithelial proliferation dependent on the IL-13/IL-4Rα/STAT6 pathway as determined by decreased nILC2s and reduced epithelial proliferation in knockout strains. The addition of IL-2 promotes inter-lineage plasticity towards a nILC2 phenotype. In experimental biliary atresia induced by rotavirus, this pathway promotes epithelial repair and tissue regeneration. The genetic loss or molecular inhibition of any part of this circuit switches nILC2s to inflammatory type 2 innate lymphoid cell-like, resulting in decreased amphiregulin production, decreased epithelial proliferation, and the full phenotype of experimental biliary atresia. CONCLUSIONS: These findings identify a key function of the IL-13/IL-4Rα/STAT6 pathway in ILC2 plasticity and an alternate circuit driven by IL-2 to promote nILC2 stability and amphiregulin expression. This pathway induces epithelial homeostasis and repair in experimental biliary atresia.


Subject(s)
Biliary Atresia , Humans , Animals , Mice , Biliary Atresia/pathology , Immunity, Innate , Interleukin-13/metabolism , Interleukin-2/metabolism , Lymphocytes , Amphiregulin/genetics , Amphiregulin/metabolism
3.
J Pediatr Surg ; 58(3): 587-594, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36150932

ABSTRACT

BACKGROUND: Biliary atresia is a neonatal disease characterized by choledochal obstruction and progressive cholangiopathy requiring liver transplantation in most patients. Hypoxia-ischemia affecting the biliary epithelium may lead to biliary obstruction. We hypothesized that ischemic cholangiopathy involving disruption of the peribiliary vascular plexus could act as a triggering event in biliary atresia pathogenesis. METHODS: Liver and porta hepatis paraffin-embedded samples of patients with biliary atresia or intrahepatic neonatal cholestasis (controls) were immunohistochemically evaluated for HIF-1alpha-nuclear signals. Frozen histological samples were analyzed for gene expression in molecular profiles associated with hypoxia-ischemia. Prospective clinical-laboratory and histopathological data of biliary atresia patients and controls were reviewed. RESULTS: Immunohistochemical HIF-1alpha signals localized to cholangiocytes were detected exclusively in liver specimens from biliary atresia patients. In 37.5% of liver specimens, HIF-1alpha signals were observed in biliary structures involving progenitor cell niches and peribiliary vascular plexus. HIF-1alpha signals were also detected in biliary remnants of 81.8% of porta hepatis specimens. Increased gene expression of molecules linked to REDOX status, biliary proliferation, and angiogenesis was identified in biliary atresia liver specimens. In addition, there was a trend towards decreased GSR expression levels in the HIF-1alpha-positive group compared to the HIF-1alpha-negative group. CONCLUSION: Activation of the HIF-1alpha pathway may be associated with the pathogenesis of biliary atresia, and additional studies are necessary to confirm the significance of this finding. Ischemic cholangiopathy and REDOX status disturbance are putative explanations for HIF-1alpha activation. These findings may give rise to novel lines of clinical and therapeutic investigation in the BA field.


Subject(s)
Biliary Atresia , Cholestasis, Intrahepatic , Cholestasis , Humans , Infant, Newborn , Biliary Atresia/genetics , Biliary Atresia/surgery , Biliary Atresia/complications , Prospective Studies , Cholestasis/etiology , Cholestasis, Intrahepatic/complications , Ischemia , Hypoxia
4.
Nat Commun ; 13(1): 18, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013245

ABSTRACT

Maternal seeding of the microbiome in neonates promotes a long-lasting biological footprint, but how it impacts disease susceptibility in early life remains unknown. We hypothesized that feeding butyrate to pregnant mice influences the newborn's susceptibility to biliary atresia, a severe cholangiopathy of neonates. Here, we show that butyrate administration to mothers renders newborn mice resistant to inflammation and injury of bile ducts and improves survival. The prevention of hepatic immune cell activation and survival trait is linked to fecal signatures of Bacteroidetes and Clostridia and increases glutamate/glutamine and hypoxanthine in stool metabolites of newborn mice. In human neonates with biliary atresia, the fecal microbiome signature of these bacteria is under-represented, with suppression of glutamate/glutamine and increased hypoxanthine pathways. The direct administration of butyrate or glutamine to newborn mice attenuates the disease phenotype, but only glutamine renders bile duct epithelial cells resistant to cytotoxicity by natural killer cells. Thus, maternal intake of butyrate influences the fecal microbial population and metabolites in newborn mice and the phenotypic expression of experimental biliary atresia, with glutamine promoting survival of bile duct epithelial cells.


Subject(s)
Biliary Atresia/immunology , Biliary Atresia/therapy , Cholestasis/metabolism , Gastrointestinal Microbiome , Animals , Animals, Newborn , Bile Ducts/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Female , Humans , Infant, Newborn , Inflammation/metabolism , Killer Cells, Natural/immunology , Liver/injuries , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred BALB C , Pregnancy
5.
Hepatol Commun ; 6(5): 995-1004, 2022 05.
Article in English | MEDLINE | ID: mdl-34962102

ABSTRACT

Children with biliary atresia (BA) often develop portal hypertension (PHT) and its complications, which are associated with high morbidity and mortality. The goal of this study was to identify serum biomarkers of PHT by using large-scale proteomics. We applied the slow off-rate modified aptamer scan (SOMAscan) to measure 1,305 proteins in serum samples of children with BA with and without clinical evidence of PHT in validation and discovery cohorts enrolled in the Biliary Atresia Study of Infants and Children. Serum proteomics data was analyzed using logistic regression to identify protein(s) with an area under the receiver operating characteristic curve (AUROC) ≥ 0.90. Immunostaining was used to characterize the cellular localization of the new biomarker proteins in liver tissues. We identified nine proteins in the discovery cohort (n = 40 subjects) and five proteins in the validation cohort (n = 80 subjects) that individually or in combination predicted clinical PHT with AUROCs ≥ 0.90. Merging the two cohorts, we found that semaphorin 6B (SEMA6B) alone and three other protein combinations (SEMA6B+secreted frizzle protein 3 [SFRP3], SEMA6B+COMM domain containing 7 [COMMD7], and vascular cell adhesion molecule 1 [VCAM1]+BMX nonreceptor tyrosine kinase [BMX]) had AUROCs ≥ 0.90 in both cohorts, with high positive- and negative-predictive values. Immunostaining of the new protein biomarkers showed increased expression in hepatic endothelial cells, cholangiocytes, and immune cells within portal triads in BA livers with clinical PHT compared to healthy livers. Conclusion: Large-scale proteomics identified SEMA6B, SFRP3, COMMD7, BMX, and VCAM1 as biomarkers highly associated with clinical PHT in BA. The expression of the biomarkers in hepatic epithelial, endothelial, and immune cells support their potential role in the pathophysiology of PHT.


Subject(s)
Biliary Atresia , Hypertension, Portal , Biliary Atresia/complications , Biomarkers , Child , Endothelial Cells , Humans , Hypertension, Portal/diagnosis , Infant , Proteomics
6.
Hepatology ; 75(1): 89-103, 2022 01.
Article in English | MEDLINE | ID: mdl-34392560

ABSTRACT

BACKGROUND AND AIMS: Biliary atresia is a severe inflammatory and fibrosing cholangiopathy of neonates of unknown etiology. The onset of cholestasis at birth implies a prenatal onset of liver dysfunction. Our aim was to investigate the mechanisms linked to abnormal cholangiocyte development. APPROACH AND RESULTS: We generated biliary organoids from liver biopsies of infants with biliary atresia and normal and diseased controls. Organoids emerged from biliary atresia livers and controls and grew as lumen-containing spheres with an epithelial lining of cytokeratin-19pos albuminneg SOX17neg cholangiocyte-like cells. Spheres had similar gross morphology in all three groups and expressed cholangiocyte-enriched genes. In biliary atresia, cholangiocyte-like cells lacked a basal positioning of the nucleus, expressed fewer developmental and functional markers, and displayed misorientation of cilia. They aberrantly expressed F-actin, ß-catenin, and Ezrin, had low signals for the tight junction protein zonula occludens-1 (ZO-1), and displayed increased permeability as evidenced by a higher Rhodamine-123 (R123) signal inside organoids after verapamil treatment. Biliary atresia organoids had decreased expression of genes related to EGF signaling and FGF2 signaling. When treated with EGF+FGF2, biliary atresia organoids expressed differentiation (cytokeratin 7 and hepatocyte nuclear factor 1 homeobox B) and functional (somatostatin receptor 2, cystic fibrosis transmembrane conductance regulator [CFTR], aquaporin 1) markers, restored polarity with improved localization of F-actin, ß-catenin and ZO-1, increased CFTR function, and decreased uptake of R123. CONCLUSIONS: Organoids from biliary atresia are viable and have evidence of halted epithelial development. The induction of developmental markers, improved cell-cell junction, and decreased epithelial permeability by EGF and FGF2 identifies potential strategies to promote epithelial maturation and function.


Subject(s)
Bile Ducts/pathology , Biliary Atresia/pathology , Cholestasis/pathology , Epithelial Cells/pathology , Organoids/pathology , Adolescent , Bile Ducts/cytology , Bile Ducts/growth & development , Biliary Atresia/complications , Biopsy , Case-Control Studies , Cells, Cultured , Child , Child, Preschool , Cholestasis/etiology , Epithelial Cells/cytology , Healthy Volunteers , Humans , Infant , Infant, Newborn , Primary Cell Culture , Tight Junctions/pathology
7.
JCI Insight ; 5(11)2020 06 04.
Article in English | MEDLINE | ID: mdl-32407296

ABSTRACT

Extramedullary hematopoietic cells are present in the liver of normal neonates in the first few days of life and persist in infants with biliary atresia. Based on a previous report that liver genes are enriched by erythroid pathways, we examined the liver gene expression pattern at diagnosis and found the top 5 enriched pathways are related to erythrocyte pathobiology in children who survived with the native liver beyond 2 years of age. Using immunostaining, anti-CD71 antibodies identified CD71+ erythroid cells among extramedullary hematopoietic cells in the livers at the time of diagnosis. In mechanistic experiments, the preemptive antibody depletion of hepatic CD71+ erythroid cells in neonatal mice rendered them resistant to rhesus rotavirus-induced (RRV-induced) biliary atresia. The depletion of CD71+ erythroid cells increased the number of effector lymphocytes and delayed the RRV infection of livers and extrahepatic bile ducts. In coculture experiments, CD71+ erythroid cells suppressed the activation of hepatic mononuclear cells. These data uncover an immunoregulatory role for CD71+ erythroid cells in the neonatal liver.


Subject(s)
Bile Ducts, Extrahepatic , Biliary Atresia/metabolism , Erythroid Cells/metabolism , Liver/metabolism , Animals , Animals, Newborn , Bile Ducts, Extrahepatic/injuries , Bile Ducts, Extrahepatic/metabolism , Bile Ducts, Extrahepatic/pathology , Biliary Atresia/pathology , Disease Models, Animal , Erythroid Cells/pathology , Humans , Liver/pathology , Mice , Mice, Inbred BALB C
8.
Front Oncol ; 10: 627701, 2020.
Article in English | MEDLINE | ID: mdl-33718121

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.

9.
Dig Med Res ; 32020 Dec.
Article in English | MEDLINE | ID: mdl-33615212

ABSTRACT

Biliary atresia (BA) is a rare but severe fibroinflammatory disease of the extrahepatic and the intrahepatic bile ducts. Without prompt interventions, BA has fatal outcomes and is the most common indicator for pediatric liver transplantation (LTx). While the mainstay of treatment involves surgically correcting the extrahepatic biliary obstruction via Kasai hepato-portoenterostomy (KHPE), activation of a multitude of biological pathways and yet-to-be-determined etiology in BA continue to foster liver inflammation, cirrhosis and need for LTx. However, important caveats still exist in our understandings of the biliary pathophysiology, the rapidity of liver fibrosis and progression to liver failure, largely due to limited knowledge of the triggers of biliary injury and the inability to accurately model human BA. Although inconclusive, a large body of existing literature points to a potential viral infection in the early peri- or postnatal period as triggers of epithelial injury that perpetuates the downstream biliary disease. Further confounding this issue, are the lack of in-vivo and in-vitro models to efficiently recapitulate the cardinal features of BA, primarily liver fibrosis. To overcome these barriers in BA research, new directions in recent years have enabled (I) identification of additional triggers of biliary injury linked mostly to environmental toxins, (II) development of models to investigate liver fibrogenesis, and (III) translational research using patient-derived organoids. Here, we discuss recent advances that undoubtedly will stimulate future efforts investigating these new and exciting avenues towards mechanistic and drug discovery efforts and disease-preventive measures. The implications of these emerging scientific investigations and disease modeling in severe fibrosing cholangiopathies like BA are enormous and contribute substantially in our understandings of this rare but deadly disease. These findings are also expected to facilitate expeditious identification of translationally targetable pathways and bring us one step closer in treating an infant with BA, a population highly vulnerable to life-long liver related complications.

10.
Gastroenterology ; 157(4): 1138-1152.e14, 2019 10.
Article in English | MEDLINE | ID: mdl-31228442

ABSTRACT

BACKGROUND & AIMS: Little is known about the factors that affect outcomes of patients with biliary atresia and there are no medical therapies that increase biliary drainage. METHODS: Liver biopsies and clinical data were obtained from infants with cholestasis and from children without liver disease (controls); messenger RNA (mRNA) was isolated, randomly assigned to discovery (n = 121) and validation sets (n = 50), and analyzed by RNA sequencing. Using the Superpc R package followed by Cox regression analysis, we sought to identify gene expression profiles that correlated with survival without liver transplantation at 24 months of age. We also searched for combinations of gene expression patterns, clinical factors, and laboratory results obtained at diagnosis and at 1 and 3 months after surgery that associated with transplant-free survival for 24 months of age. We induced biliary atresia in BALB/c mice by intraperitoneal administration of Rhesus rotavirus type A. Mice were given injections of the antioxidants N-acetyl-cysteine (NAC) or manganese (III) tetrakis-(4-benzoic acid)porphyrin. Blood and liver tissues were collected and analyzed by histology and immunohistochemistry. RESULTS: We identified a gene expression pattern of 14 mRNAs associated with shorter vs longer survival times in the discovery and validation sets (P < .001). This gene expression signature, combined with level of bilirubin 3 months after hepatoportoenterostomy, identified children who survived for 24 months with an area under the curve value of 0.948 in the discovery set and 0.813 in the validation set (P < .001). Computer models correlated a cirrhosis-associated transcriptome with decreased times of transplant-free survival; this transcriptome included activation of genes that regulate the extracellular matrix and numbers of activated stellate cells and portal fibroblasts. Many mRNAs expressed at high levels in liver tissues from patients with 2-year transplant-free survival had enriched scores for glutathione metabolism. Among mice with biliary atresia given injections of antioxidants, only NAC reduced histologic features of liver damage and serum levels of aminotransferase, gamma-glutamyl transferase, and bilirubin. NAC also reduced bile duct obstruction and liver fibrosis and increased survival times. CONCLUSIONS: In studies of liver tissues from infants with cholestasis, we identified a 14-gene expression pattern that associated with transplant-free survival for 2 years. mRNAs encoding proteins that regulate fibrosis genes were increased in liver tissues from infants who did not survive for 2 years, whereas mRNAs that encoded proteins that regulate glutathione metabolism were increased in infants who survived for 2 years. NAC reduced liver injury and fibrosis in mice with biliary atresia, and increased survival times. Agents such as NAC that promote glutathione metabolism might be developed for treatment of biliary atresia.


Subject(s)
Biliary Atresia/genetics , Biliary Atresia/therapy , Gene Expression Profiling/methods , RNA, Messenger/genetics , Transcriptome , Acetylcysteine/pharmacology , Age Factors , Animals , Biliary Atresia/diagnosis , Biliary Atresia/mortality , Case-Control Studies , Child, Preschool , Disease Models, Animal , Female , Gene Regulatory Networks , Genetic Markers , Genetic Predisposition to Disease , Humans , Infant , Liver Transplantation , Male , Mice, Inbred BALB C , Phenotype , Predictive Value of Tests , Progression-Free Survival , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome
11.
J Hepatol ; 69(5): 1136-1144, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29886157

ABSTRACT

BACKGROUND & AIMS: Biliary atresia (BA) results from a neonatal inflammatory and fibrosing obstruction of bile ducts of unknown etiology. Although the innate immune system has been linked to the virally induced mechanism of disease, the role of inflammasome-mediated epithelial injury remains largely undefined. Here, we hypothesized that disruption of the inflammasome suppresses the neonatal proinflammatory response and prevents experimental BA. METHODS: We determined the expression of key inflammasome-related genes in livers from infants at diagnosis of BA and in extrahepatic bile ducts (EHBDs) of neonatal mice after infection with rotavirus (RRV) immediately after birth. Then, we determined the impact of the wholesale inactivation of the genes encoding IL-1R1 (Il1r1-/-), NLRP3 (Nlrp3-/-) or caspase-1 (Casp1-/-) on epithelial injury and bile duct obstruction. RESULTS: IL1R1, NLRP3 and CASP1 mRNA increased significantly in human livers at the time of diagnosis, and in EHBDs of RRV-infected mice. In Il1r1-/- mice, the epithelial injury of EHBDs induced by RRV was suppressed, with dendritic cells unable to activate natural killer cells. A similar protection was observed in Nlrp3-/- mice, with decreased injury and inflammation of livers and EHBDs. Long-term survival was also improved. In contrast, the inactivation of the Casp1 gene had no impact on tissue injury, and all mice died. Tissue analyses in Il1r1-/- and Nlrp3-/- mice showed decreased populations of dendritic cells and natural killer cells and suppressed expression of type-1 cytokines and chemokines. CONCLUSIONS: Genes of the inflammasome are overexpressed at diagnosis of BA in humans and in the BA mouse model. In the experimental model, the targeted loss of IL-1R1 or NLRP3, but not of caspase-1, protected neonatal mice against RRV-induced bile duct obstruction. LAY SUMMARY: Biliary atresia is a severe inflammatory and obstructive disease of bile ducts occurring in infancy. Although the cause is unknown, activation of the innate and adaptive immune systems injures the bile duct epithelium. In this study we found that patients' livers had increased expression of inflammasome genes. Using mice engineered to inactivate individual inflammasome genes, the epithelial injury and bile duct obstruction were prevented by the loss of Il1r1 or Nlrp3, with a decreased activation of natural killer cells and expression of cytokines and chemokines. In contrast, the loss of Casp1 did not change the disease phenotype. Combined, the findings point to a differential role of inflammasome gene products in the pathogenic mechanisms of biliary atresia.


Subject(s)
Biliary Atresia/etiology , Cholestasis/etiology , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Receptors, Interleukin-1 Type I/physiology , Animals , Animals, Newborn , Biliary Atresia/pathology , Caspase 1/physiology , Cholestasis/pathology , Dendritic Cells/immunology , Epithelium/pathology , Female , Humans , Killer Cells, Natural/immunology , Lymphocyte Activation , Male , Mice , Mice, Inbred BALB C , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Receptors, Interleukin-1 Type I/genetics , Rotavirus Infections/complications
12.
J Immunol ; 200(1): 147-162, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29158418

ABSTRACT

We previously reported that NOD.c3c4 mice develop spontaneous autoimmune biliary disease (ABD) with anti-mitochondrial Abs, histopathological lesions, and autoimmune T lymphocytes similar to human primary biliary cholangitis. In this article, we demonstrate that ABD in NOD.c3c4 and related NOD ABD strains is caused by a chromosome 1 region that includes a novel mutation in polycystic kidney and hepatic disease 1 (Pkhd1). We show that a long terminal repeat element inserted into intron 35 exposes an alternative polyadenylation site, resulting in a truncated Pkhd1 transcript. A novel NOD congenic mouse expressing aberrant Pkhd1, but lacking the c3 and c4 chromosomal regions (NOD.Abd3), reproduces the immunopathological features of NOD ABD. RNA sequencing of NOD.Abd3 common bile duct early in disease demonstrates upregulation of genes involved in cholangiocyte injury/morphology and downregulation of immunoregulatory genes. Consistent with this, bone marrow chimera studies show that aberrant Pkhd1 must be expressed in the target tissue (cholangiocytes) and the immune system (bone marrow). Mutations of Pkhd1 produce biliary abnormalities in mice but have not been previously associated with autoimmunity. In this study, we eliminate clinical biliary disease by backcrossing this Pkhd1 mutation onto the C57BL/6 genetic background; thus, the NOD genetic background (which promotes autoimmunity) is essential for disease. We propose that loss of functional Pkhd1 on the NOD background produces early bile duct abnormalities, initiating a break in tolerance that leads to autoimmune cholangitis in NOD.Abd3 congenic mice. This model is important for understanding loss of tolerance to cholangiocytes and is relevant to the pathogenesis of several human cholangiopathies.


Subject(s)
Autoimmune Diseases/genetics , Cholangitis/genetics , Diabetes Mellitus/genetics , Liver Cirrhosis, Biliary/genetics , Mutation/genetics , Receptors, Cell Surface/genetics , Animals , Chimera , Disease Models, Animal , Genetic Background , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Terminal Repeat Sequences/genetics
13.
Sci Transl Med ; 9(417)2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29167395

ABSTRACT

Biliary atresia is a progressive infantile cholangiopathy of complex pathogenesis. Although early diagnosis and surgery are the best predictors of treatment response, current diagnostic approaches are imprecise and time-consuming. We used large-scale, quantitative serum proteomics at the time of diagnosis of biliary atresia and other cholestatic syndromes (serving as disease controls) to identify biomarkers of disease. In a discovery cohort of 70 subjects, the lead biomarker was matrix metalloproteinase-7 (MMP-7), which retained high distinguishing features for biliary atresia in two validation cohorts. Notably, the diagnostic performance reached 95% when MMP-7 was combined with γ-glutamyltranspeptidase (GGT), a marker of cholestasis. Using human tissue and an experimental model of biliary atresia, we found that MMP-7 is primarily expressed by cholangiocytes, released upon epithelial injury, and promotes the experimental disease phenotype. Thus, we propose that serum MMP-7 (alone or in combination with GGT) is a diagnostic biomarker for biliary atresia and may serve as a therapeutic target.


Subject(s)
Biliary Atresia/metabolism , Matrix Metalloproteinase 7/metabolism , Proteomics/methods , Animals , Biliary Atresia/pathology , Biomarkers/metabolism , Cholestasis/metabolism , Cholestasis/pathology , Disease Models, Animal , Humans , Matrix Metalloproteinase 7/genetics
14.
PLoS One ; 12(8): e0182089, 2017.
Article in English | MEDLINE | ID: mdl-28763485

ABSTRACT

Biliary atresia is progressive fibro-inflammatory cholangiopathy of young children. Central to pathogenic mechanisms of injury is the tissue targeting by the innate and adaptive immune cells. Among these cells, neutrophils and the IL-8/Cxcl-8 signaling via its Cxcr2 receptor have been linked to bile duct injury. Here, we aimed to investigate whether the intestinal microbiome modulates Cxcr2-dependent bile duct injury and obstruction. Adult wild-type (WT) and Cxcr2-/- mice were fed a diet supplemented with sulfamethoxazole/trimethoprim (SMZ/TMP) during pregnancy and lactation, and their pups were injected intraperitoneally with rhesus rotavirus (RRV) within 24 hours of life to induce experimental biliary atresia. The maternal exposure to SMZ/TMP significantly lowered the incidence of jaundice and bile duct obstruction and resulted in improved survival, especially in Cxcr2-/- mice. Analyses of the microbiome by deep sequencing of 16S rRNA of the neonatal colon showed a delay in bacterial colonization of WT mice induced by SMZ/TMP, with a notable switch from Proteobacteria to Firmicutes. Interestingly, the genetic inactivation of Cxcr2 alone produced a similar bacterial shift. When treated with SMZ/TMP, Cxcr2-/- mice infected with RRV to induce experimental biliary atresia showed further enrichment of Corynebacterium, Anaerococcus and Streptococcus. Among these, Anaerococcus lactolyticus was significantly associated with a suppression of biliary injury, cholestasis, and survivability. These results suggest that the postnatal development of the intestinal microbiota is an important susceptibility factor for experimental biliary atresia.


Subject(s)
Bile Ducts/injuries , Biliary Atresia/metabolism , Inflammation/metabolism , Microbiota , Receptors, Interleukin-8B/metabolism , Animals , Biliary Atresia/microbiology , Disease Models, Animal , Female , Gene Expression Profiling , Lactation , Linear Models , Macaca mulatta , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Polymerase Chain Reaction , Pregnancy , Pregnancy, Animal , RNA, Ribosomal, 16S/genetics , Receptors, Interleukin-8B/genetics , Rotavirus , Signal Transduction , Sulfamethoxazole/administration & dosage , Trimethoprim/administration & dosage
15.
JCI Insight ; 2(5): e88747, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28289704

ABSTRACT

Biliary atresia is an obstructive cholangiopathy of infancy that progresses to end-stage cirrhosis. Although the pathogenesis of the disease is not completely understood, previous reports link TNFα to apoptosis of the bile duct epithelium in the presence of IFNγ. Here, we investigate if TNFα signaling regulates pathogenic mechanisms of biliary atresia. First, we quantified the expression of TNFA and its receptors TNFR1 and TNFR2 in human livers and found an increased expression of the receptors at the time of diagnosis. In mechanistic experiments using a neonatal mouse model of rhesus rotavirus-induced (RRV-induced) biliary atresia, the expression of the ligand and both receptors increased 6- to 8-fold in hepatic DCs and NK lymphocytes above controls. The activation of tissue NK cells by RRV-primed DCs was independent of TNFα-TNFR signaling. Once activated, the expression of TNFα by NK cells induced lysis of 55% ± 2% of bile duct epithelial cells, which was completely prevented by blocking TNFα or TNFR2, but not TNFR1. More notably, antibody-mediated or genetic disruption of TNFα-TNFR2 signaling in vivo decreased apoptosis and epithelial injury; suppressed the infiltration of livers by T cells, DCs, and NK cells; prevented extrahepatic bile duct obstruction; and promoted long-term survival. These findings point to a key role for the TNFα/TNFR2 axis on pathogenesis of experimental biliary atresia and identify new therapeutic targets to suppress the disease phenotype.


Subject(s)
Bile Ducts/pathology , Biliary Atresia/metabolism , Cholestasis/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Animals , Bile Ducts/metabolism , Cytokines/metabolism , Disease Models, Animal , Epithelium/pathology , Humans , Mice , Mice, Inbred BALB C , Receptors, Tumor Necrosis Factor, Type I/metabolism
16.
Development ; 144(6): 1056-1064, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28275009

ABSTRACT

A self-organizing organoid model provides a new approach to study the mechanism of human liver organogenesis. Previous animal models documented that simultaneous paracrine signaling and cell-to-cell surface contact regulate hepatocyte differentiation. To dissect the relative contributions of the paracrine effects, we first established a liver organoid using human induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as previously reported. Time-lapse imaging showed that hepatic-specified endoderm iPSCs (HE-iPSCs) self-assembled into three-dimensional organoids, resulting in hepatic gene induction. Progressive differentiation was demonstrated by hepatic protein production after in vivo organoid transplantation. To assess the paracrine contributions, we employed a Transwell system in which HE-iPSCs were separately co-cultured with MSCs and/or HUVECs. Although the three-dimensional structure did not form, their soluble factors induced a hepatocyte-like phenotype in HE-iPSCs, resulting in the expression of bile salt export pump. In conclusion, the mesoderm-derived paracrine signals promote hepatocyte maturation in liver organoids, but organoid self-organization requires cell-to-cell surface contact. Our in vitro model demonstrates a novel approach to identify developmental paracrine signals regulating the differentiation of human hepatocytes.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Liver/cytology , Organoids/cytology , Paracrine Communication , Animals , Bile Acids and Salts/metabolism , Biological Transport , Biomarkers/metabolism , Cell Polarity , Coculture Techniques , Gene Expression Regulation , Hepatocytes/cytology , Hepatocytes/ultrastructure , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Morphogenesis/genetics , Organ Specificity/genetics , Organoids/metabolism , Proteins/analysis
17.
PLoS One ; 10(5): e0127191, 2015.
Article in English | MEDLINE | ID: mdl-25992581

ABSTRACT

UNLABELLED: Biliary atresia is a rapidly progressive obstructive cholangiopathy of infants. Mechanistic studies in the mouse model of Rhesus rotavirus (RRV)-induced biliary atresia have linked the importance of effector lymphocytes to the pathogenesis of extrahepatic bile duct (EHBD) injury and obstruction in experimental biliary atresia; however, studies of the progressive liver injury have been limited by early death of newborn mice. Here, we aimed to determine 1) if a lower inoculum of RRV induces obstruction of EHBDs while allowing for ongoing liver inflammation, and 2) if NK cells regulate intrahepatic injury. The administration of 0.25 x 10(6) fluorescence forming units of RRV induced an obstructive extrahepatic cholangiopathy, but allowed for restoration of the duct epithelium, increased survival, and the development of a progressive intrahepatic inflammatory injury with molecular and cellular signatures equivalent to the traditional infectious model. Investigating the mechanisms of liver injury, we found that NK cell depletion at the onset of jaundice decreased liver inflammation, suppressed the expression of fibrosis and inflammation/immunity genes, lowered plasma ALT and bilirubin and improved survival. CONCLUSIONS: Lower inoculation of RRV-induced progressive liver injury and fibrosis via NK cells. These findings point to the potential use of NK cell-depleting strategies to block progression of liver disease in biliary atresia.


Subject(s)
Biliary Atresia/immunology , Killer Cells, Natural/immunology , Rotavirus Infections/immunology , Animals , Animals, Newborn , Disease Models, Animal , Mice
19.
J Clin Invest ; 124(7): 3241-51, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24892809

ABSTRACT

Injury to the biliary epithelium triggers inflammation and fibrosis, which can result in severe liver diseases and may progress to malignancy. Development of a type 1 immune response has been linked to biliary injury pathogenesis; however, a subset of patients with biliary atresia, the most common childhood cholangiopathy, exhibit increased levels of Th2-promoting cytokines. The relationship among different inflammatory drivers, epithelial repair, and carcinogenesis remains unclear. Here, we determined that the Th2-activating cytokine IL-33 is elevated in biliary atresia patient serum and in the livers and bile ducts of mice with experimental biliary atresia. Administration of IL-33 to WT mice markedly increased cholangiocyte proliferation and promoted sustained cell growth, resulting in dramatic and rapid enlargement of extrahepatic bile ducts. The IL-33-dependent proliferative response was mediated by an increase in the number of type 2 innate lymphoid cells (ILC2s), which released high levels of IL-13 that in turn promoted cholangiocyte hyperplasia. Induction of the IL-33/ILC2/IL-13 circuit in a murine biliary injury model promoted epithelial repair; however, induction of this circuit in mice with constitutive activation of AKT and YAP in bile ducts induced cholangiocarcinoma with liver metastases. These findings reveal that IL-33 mediates epithelial proliferation and suggest that activation of IL-33/ILC2/IL-13 may improve biliary repair and disruption of the circuit may block progression of carcinogenesis.


Subject(s)
Biliary Atresia/immunology , Biliary Atresia/pathology , Biliary Tract Neoplasms/immunology , Biliary Tract Neoplasms/pathology , Interleukins/physiology , Animals , Animals, Newborn , Bile Ducts, Extrahepatic/immunology , Bile Ducts, Extrahepatic/pathology , Biliary Atresia/etiology , Biliary Tract Neoplasms/etiology , Carcinogenesis , Cell Line , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/etiology , Cholangiocarcinoma/immunology , Cholangiocarcinoma/pathology , Disease Models, Animal , Female , Humans , Interleukin-13/deficiency , Interleukin-13/genetics , Interleukin-13/physiology , Interleukin-33 , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Th2 Cells/immunology
20.
Hepatology ; 60(3): 941-53, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24798639

ABSTRACT

UNLABELLED: Biliary atresia (BA), the most common cause of end-stage liver disease and the leading indication for pediatric liver transplantation, is associated with intrahepatic ductular reactions within regions of rapidly expanding periportal biliary fibrosis. Whereas the extent of such biliary fibrosis is a negative predictor of long-term transplant-free survival, the cellular phenotypes involved in the fibrosis are not well established. Using a rhesus rotavirus-induced mouse model of BA, we demonstrate significant expansion of a cell population expressing the putative stem/progenitor cell marker, PROMININ-1 (PROM1), adjacent to ductular reactions within regions of periportal fibrosis. PROM1positive (pos) cells express Collagen-1α1. Subsets of PROM1pos cells coexpress progenitor cell marker CD49f, epithelial marker E-CADHERIN, biliary marker CYTOKERATIN-19, and mesenchymal markers VIMENTIN and alpha-SMOOTH MUSCLE ACTIN (αSMA). Expansion of the PROM1pos cell population is associated with activation of Fibroblast Growth Factor (FGF) and Transforming Growth Factor-beta (TGFß) signaling. In vitro cotreatment of PROM1-expressing Mat1a-/- hepatic progenitor cells with recombinant human FGF10 and TGFß1 promotes morphologic transformation toward a myofibroblastic cell phenotype with increased expression of myofibroblastic genes Collagen-1α1, Fibronectin, and α-Sma. Infants with BA demonstrate similar expansion of periportal PROM1pos cells with activated Mothers Against Decapentaplegic Homolog 3 (SMAD3) signaling in association with increased hepatic expression of FGF10, FGFR1, and FGFR2 as well as mesenchymal genes SLUG and SNAIL. Infants with perinatal subtype of BA have higher tissue levels of PROM1 expression than those with embryonic subtype. CONCLUSION: Expansion of collagen-producing PROM1pos cells within regions of periportal fibrosis is associated with activated FGF and TGFß pathways in both experimental and human BA. PROM1pos cells may therefore play an important role in the biliary fibrosis of BA.


Subject(s)
Antigens, CD/biosynthesis , Biliary Atresia/metabolism , Glycoproteins/biosynthesis , Liver Cirrhosis/metabolism , AC133 Antigen , Animals , Biliary Atresia/complications , Disease Models, Animal , Female , Fibroblast Growth Factors/metabolism , Humans , Liver Cirrhosis/complications , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Peptides , Proto-Oncogene Proteins c-akt/metabolism , Rotavirus Infections/complications , Transforming Growth Factor beta/metabolism , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...