Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(6): 4153-4161, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38300827

ABSTRACT

Separating ethane (C2H6) from ethylene (C2H4) is an essential and energy-intensive process in the chemical industry. Here, we report two flexible diamondoid coordination networks, X-dia-1-Ni and X-dia-1-Ni0.89Co0.11, that exhibit gate-opening between narrow-pore (NP) and large-pore (LP) phases for C2H6, but not for C2H4. X-dia-1-Ni0.89Co0.11 thereby exhibited a type F-IV isotherm at 273 K with no C2H6 uptake and a high uptake (111 cm3 g-1, 1 atm) for the NP and LP phases, respectively. Conversely, the LP phase exhibited a low uptake of C2H4 (12.2 cm3 g-1). This C2H6/C2H4 uptake ratio of 9.1 for X-dia-1-Ni0.89Co0.11 far surpassed those of previously reported physisorbents, many of which are C2H4-selective. In situ variable-pressure X-ray diffraction and modeling studies provided insight into the abrupt C2H6-induced structural NP to LP transformation. The promise of pure gas isotherms and, more generally, flexible coordination networks for gas separations was validated by dynamic breakthrough studies, which afforded high-purity (99.9%) C2H4 in one step.

2.
J Mater Chem A Mater ; 11(30): 16019-16026, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-38013758

ABSTRACT

Compared to rigid physisorbents, switching coordination networks that reversibly transform between closed (non-porous) and open (porous) phases offer promise for gas/vapour storage and separation owing to their improved working capacity and desirable thermal management properties. We recently introduced a coordination network, X-dmp-1-Co, which exhibits switching enabled by transient porosity. The resulting "open" phases are generated at threshold pressures even though they are conventionally non-porous. Herein, we report that X-dmp-1-Co is the parent member of a family of transiently porous coordination networks [X-dmp-1-M] (M = Co, Zn and Cd) and that each exhibits transient porosity but switching events occur at different threshold pressures for CO2 (0.8, 2.1 and 15 mbar, for Co, Zn and Cd, respectively, at 195 K), H2O (10, 70 and 75% RH, for Co, Zn and Cd, respectively, at 300 K) and CH4 (<2, 10 and 25 bar, for Co, Zn and Cd, respectively, at 298 K). Insight into the phase changes is provided through in situ SCXRD and in situ PXRD. We attribute the tuning of gate-opening pressure to differences and changes in the metal coordination spheres and how they impact dpt ligand rotation. X-dmp-1-Zn and X-dmp-1-Cd join a small number of coordination networks (<10) that exhibit reversible switching for CH4 between 5 and 35 bar, a key requirement for adsorbed natural gas storage.

3.
Phys Chem Chem Phys ; 25(40): 27065-27074, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37792449

ABSTRACT

Organic co-crystals have emerged as a promising class of semiconductors for next-generation optoelectronic devices due to their unique photophysical properties. This paper presents a joint experimental-theoretical study comparing the crystal structure, spectroscopy, and electronic structure of two charge transfer co-crystals. Reported herein is a novel co-crystal Npe:TCNQ, formed from 4-(1-naphthylvinyl)pyridine (Npe) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) via molecular self-assembly. This work also presents a revised study of the co-crystal composed of Npe and 1,2,4,5-tetracyanobenzene (TCNB) molecules, Npe:TCNB, herein reported with a higher-symmetry (monoclinic) crystal structure than previously published. Npe:TCNB and Npe:TCNQ dimer clusters are used as theoretical model systems for the co-crystals; the geometries of the dimers are compared to geometries of the extended solids, which are computed with periodic boundary conditions density functional theory. UV-Vis absorption spectra of the dimers are computed with time-dependent density functional theory and compared to experimental UV-Vis diffuse reflectance spectra. Both Npe:TCNB and Npe:TCNQ are found to exhibit neutral character in the S0 state and ionic character in the S1 state. The high degree of charge transfer in the S1 state of both Npe:TCNB and Npe:TCNQ is rationalized by analyzing the changes in orbital localization associated with the S1 transitions.

4.
Angew Chem Int Ed Engl ; 62(47): e202309985, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37770385

ABSTRACT

We report that linker ligand substitution involving just one atom induces a shape-memory effect in a flexible coordination network. Specifically, whereas SIFSIX-23-Cu, [Cu(SiF6 )(L)2 ]n , (L=1,4-bis(1-imidazolyl)benzene, SiF6 2- =SIFSIX) has been previously reported to exhibit reversible switching between closed and open phases, the activated phase of SIFSIX-23-CuN , [Cu(SiF6 )(LN )2 ]n (LN =2,5-bis(1-imidazolyl)pyridine), transformed to a kinetically stable porous phase with strong affinity for CO2 . As-synthesized SIFSIX-23-CuN , α, transformed to less open, γ, and closed, ß, phases during activation. ß did not adsorb N2 (77 K), rather it reverted to α induced by CO2 at 195, 273 and 298 K. CO2 desorption resulted in α', a shape-memory phase which subsequently exhibited type-I isotherms for N2 (77 K) and CO2 as well as strong performance for separation of CO2 /N2 (15/85) at 298 K and 1 bar driven by strong binding (Qst =45-51 kJ/mol) and excellent CO2 /N2 selectivity (up to 700). Interestingly, α' reverted to ß after re-solvation/desolvation. Molecular simulations and density functional theory (DFT) calculations provide insight into the properties of SIFSIX-23-CuN .

6.
Angew Chem Int Ed Engl ; 62(39): e202308438, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37534579

ABSTRACT

Porous sorbents are materials that are used for various applications, including storage and separation. Typically, the uptake of a single gas by a sorbent decreases with temperature, but the relative affinity for two similar gases does not change. However, in this study, we report a rare example of "crossover sorption," in which the uptake capacity and apparent affinity for two similar gases reverse at different temperatures. We synthesized two soft porous coordination polymers (PCPs), [Zn2 (L1)(L2)2 ]n (PCP-1) and [Zn2 (L1)(L3)2 ]n (PCP-2) (L1= 1,4-bis(4-pyridyl)benzene, L2=5-methyl-1,3-di(4-carboxyphenyl)benzene, and L3=5-methoxy-1,3-di(4-carboxyphenyl)benzene). These PCPs exhibits structural changes upon gas sorption and show the crossover sorption for both C2 H2 /CO2 and C2 H6 /C2 H4 , in which the apparent affinity reverse with temperature. We used in situ gas-loading single-crystal X-ray diffraction (SCXRD) analysis to reveal the guest inclusion structures of PCP-1 for C2 H2 , CO2 , C2 H6 , and C2 H4 gases at various temperatures. Interestingly, we observed three-step single-crystal to single-crystal (sc-sc) transformations with the different loading phases under these gases, providing insight into guest binding positions, nature of host-guest or guest-guest interactions, and their phase transformations upon exposure to these gases. Combining with theoretical investigation, we have fully elucidated the crossover sorption in the flexible coordination networks, which involves a reversal of apparent affinity and uptake of similar gases at different temperatures. We discovered that this behaviour can be explained by the delicate balance between guest binding and host-guest and guest-guest interactions.

7.
Chem Mater ; 35(9): 3660-3670, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37181677

ABSTRACT

In this work, we present the first metal-organic framework (MOF) platform with a self-penetrated double diamondoid (ddi) topology that exhibits switching between closed (nonporous) and open (porous) phases induced by exposure to gases. A crystal engineering strategy, linker ligand substitution, was used to control gas sorption properties for CO2 and C3 gases. Specifically, bimbz (1,4-bis(imidazol-1-yl)benzene) in the coordination network X-ddi-1-Ni ([Ni2(bimbz)2(bdc)2(H2O)]n, H2bdc = 1,4-benzenedicarboxylic acid) was replaced by bimpz (3,6-bis(imidazol-1-yl)pyridazine) in X-ddi-2-Ni ([Ni2(bimpz)2(bdc)2(H2O)]n). In addition, the 1:1 mixed crystal X-ddi-1,2-Ni ([Ni2(bimbz)(bimpz)(bdc)2(H2O)]n) was prepared and studied. All three variants form isostructural closed (ß) phases upon activation which each exhibited different reversible properties upon exposure to CO2 at 195 K and C3 gases at 273 K. For CO2, X-ddi-1-Ni revealed incomplete gate-opening, X-ddi-2-Ni exhibited a stepped isotherm with saturation uptake of 3.92 mol·mol-1, and X-ddi-1,2-Ni achieved up to 62% more gas uptake and a distinct isotherm shape vs the parent materials. Single-crystal X-ray diffraction (SCXRD) and in situ powder X-ray diffraction (PXRD) experiments provided insight into the mechanisms of phase transformation and revealed that the ß phases are nonporous with unit cell volumes 39.9, 40.8, and 41.0% lower than the corresponding as-synthesized α phases, X-ddi-1-Ni-α, X-ddi-2-Ni-α, and X-ddi-1,2-Ni-α, respectively. The results presented herein represent the first report of reversible switching between closed and open phases in ddi topology coordination networks and further highlight how ligand substitution can profoundly impact the gas sorption properties of switching sorbents.

8.
Commun Chem ; 6(1): 62, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016050

ABSTRACT

Incorporating strong electron donor functionality into flexible coordination networks is intriguing for sorption applications due to a built-in mechanism for electron-withdrawing guests. Here we report a 2D flexible porous coordination network, [Ni2(4,4'-bipyridine)(VTTF)2]n(1) (where H2VTTF = 2,2'-[1,2-bis(4-benzoic acid)-1,2ethanediylidene]bis-1,3-benzodithiole), which exhibits large structural deformation from the as-synthesized or open phase (1α) into the closed phase (1ß) after guest removal, as demonstrated by X-ray and electron diffraction. Interestingly, upon exposure to electron-withdrawing species, 1ß reversibly undergoes guest accommodation transitions; 1α⊃O2 (90 K) and 1α⊃N2O (185 K). Moreover, the 1ß phase showed exclusive O2 sorption over other gases (N2, Ar, and CO) at 120 K. The phase transformations between the 1α and 1ß phases under these gases were carefully investigated by in-situ X-ray diffraction, in-situ spectroscopic studies, and DFT calculations, validating that the unusual sorption was attributed to the combination of flexible frameworks and VTTF (electron-donor) that induces strong interactions with electron-withdrawing species.

9.
Nat Chem ; 15(4): 542-549, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36781909

ABSTRACT

Flexible metal-organic materials that exhibit stimulus-responsive switching between closed (non-porous) and open (porous) structures induced by gas molecules are of potential utility in gas storage and separation. Such behaviour is currently limited to a few dozen physisorbents that typically switch through a breathing mechanism requiring structural contortions. Here we show a clathrate (non-porous) coordination network that undergoes gas-induced switching between multiple non-porous phases through transient porosity, which involves the diffusion of guests between discrete voids through intra-network distortions. This material is synthesized as a clathrate phase with solvent-filled cavities; evacuation affords a single-crystal to single-crystal transformation to a phase with smaller cavities. At 298 K, carbon dioxide, acetylene, ethylene and ethane induce reversible switching between guest-free and gas-loaded clathrate phases. For carbon dioxide and acetylene at cryogenic temperatures, phases showing progressively higher loadings were observed and characterized using in situ X-ray diffraction, and the mechanism of diffusion was computationally elucidated.

10.
ChemSusChem ; 16(9): e202300069, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36745466

ABSTRACT

Adsorbed natural gas (ANG) systems involve using porous materials to increase the working capacity and/or reduce the storage pressure compared to compressed natural gas (CNG). Flexible metal-organic materials (FMOMs) are particularly interesting in this context since their stepped isotherms can afford increased working capacity if the adsorption/desorption steps occur within the proper pressure range. We report herein that metal doping in a family of isostructural FMOMs, ML2 (M=Co, Ni or Nix Co1-x , L=4-(4-pyridyl)-biphenyl-4-carboxylic acid), enables control over the gate opening between non-porous (closed) and porous (open) phases at pressures relevant to methane storage. Specifically, methane-induced phase transformations can be fine-tuned by using different Ni/Co ratios to enhance methane working capacity. The optimal working capacity from 5 to 35 bar at 298 K (153 cm3  cm-3 ) was found for Ni0.89 Co0.11 L2 (X-dia-1-Ni0.89 Co0.11 ), which is greater than that of benchmark rigid MOFs.

11.
ACS Appl Mater Interfaces ; 14(34): 39560-39566, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35975756

ABSTRACT

That physisorbents can reduce the energy footprint of water vapor capture and release has attracted interest because of potential applications such as moisture harvesting, dehumidification, and heat pumps. In this context, sorbents exhibiting an S-shaped single-step water sorption isotherm are desirable, most of which are structurally rigid sorbents that undergo pore-filling at low relative humidity (RH), ideally below 30% RH. Here, we report that a new flexible one-dimensional (1D) coordination network, [Cu(HQS)(TMBP)] (H2HQS = 8-hydroxyquinoline-5-sulfonic acid and TMBP = 4,4'-trimethylenedipyridine), exhibits at least five phases: two as-synthesized open phases, α ⊃ H2O and ß âŠƒ MeOH; an activated closed phase (γ); CO2 (δ ⊃ CO2) and C2H2 (ϵ ⊃ C2H2) loaded phases. The γ phase underwent a reversible structural transformation to α ⊃ H2O with a stepped sorption profile (Type F-IV) when exposed to water vapor at <30% RH at 300 K. The hydrolytic stability of [Cu(HQS)(TMBP)] was confirmed by powder X-ray diffraction (PXRD) after immersion in boiling water for 6 months. Temperature-humidity swing cycling measurements demonstrated that working capacity is retained for >100 cycles and only mild heating (<323 K) is required for regeneration. Unexpectedly, the kinetics of loading and unloading of [Cu(HQS)(TMBP)] compares favorably with well-studied rigid water sorbents such as Al-fumarate, MOF-303, and CAU-10-H. Furthermore, a polymer composite of [Cu(HQS)(TMBP)] was prepared and its water sorption retained its stepped profile and uptake capacity over multiple cycles.

12.
Angew Chem Int Ed Engl ; 61(15): e202201017, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35132777

ABSTRACT

The enrichment and purification of coal-bed methane provides a source of energy and helps offset global warming. In this work, we demonstrate a strategy involving the regulation of the pore size and pore chemistry to promote the separation of CH4 /N2 mixtures in four nickel-based coordination networks, named Ni(ina)2 , Ni(3-ain)2 , Ni(2-ain)2 , and Ni(pba)2 , (where ina=isonicotinic acid, 3-ain=3-aminoisonicotinic acid, 2-ain=2-aminoisonicotinic acid, and pba=4-(4-pyridyl)benzoic acid). Among them, Ni(ina)2 and Ni(3-ain)2 can effectively separate CH4 from N2 with top-performing performance because of the suitable pore size (≈0.6 and 0.5 nm) and pore environment. Explicitly, Ni(ina)2 exhibits the highest ever reported CH4 /N2 selectivity of 15.8 and excellent CH4 uptake (40.8 cm3 g-1 ) at ambient conditions, thus setting new benchmarks for all reported MOFs and traditional adsorbents. The exceptional CH4 /N2 separation performance of Ni(ina)2 is confirmed by dynamic breakthrough experiments. Under different CH4 /N2 ratios, Ni(ina)2 selectively extracts methane from the gaseous blend and produces a high purity of CH4 (99 %). Theoretical calculations and CH4 -loading single-crystal structure analysis provide critical insight into the adsorption/separation mechanism. Ni(ina)2 and Ni(3-ain)2 can form rich intermolecular interactions with methane, indicating a strong adsorption affinity between pore walls and CH4 molecules. Importantly, Ni(ina)2 has good thermal and moisture stability and can easily be scaled up at a low cost ($25 per kilogram), which will be valuable for potential industrial applications. Overall, this work provides a powerful approach for the selective adsorption of CH4 from coal-bed methane.

16.
Angew Chem Int Ed Engl ; 60(37): 20383-20390, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34250717

ABSTRACT

Structural changes at the active site of an enzyme induced by binding to a substrate molecule can result in enhanced activity in biological systems. Herein, we report that the new hybrid ultramicroporous material sql-SIFSIX-bpe-Zn exhibits an induced fit binding mechanism when exposed to acetylene, C2 H2 . The resulting phase change affords exceptionally strong C2 H2 binding that in turn enables highly selective C2 H2 /C2 H4 and C2 H2 /CO2 separation demonstrated by dynamic breakthrough experiments. sql-SIFSIX-bpe-Zn was observed to exhibit at least four phases: as-synthesised (α); activated (ß); and C2 H2 induced phases (ß' and γ). sql-SIFSIX-bpe-Zn-ß exhibited strong affinity for C2 H2 at ambient conditions as demonstrated by benchmark isosteric heat of adsorption (Qst ) of 67.5 kJ mol-1 validated through in situ pressure gradient differential scanning calorimetry (PG-DSC). Further, in situ characterisation and DFT calculations provide insight into the mechanism of the C2 H2 induced fit transformation, binding positions and the nature of host-guest and guest-guest interactions.

17.
Angew Chem Int Ed Engl ; 60(21): 11688-11694, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33594724

ABSTRACT

Controlling gas sorption by simple pore modification is important in molecular recognition and industrial separation processes. In particular, it is challenging to realize the inverse selectivity, which reduces the adsorption of a high-affinity gas and increases the adsorption of a low-affinity gas. Herein, an "opposite action" strategy is demonstrated for boosting CO2 /C2 H2 selectivity in porous coordination polymers (PCPs). A precise steric design of channel pores using an amino group as an additional interacting site enabled the synergetic increase in CO2 adsorption while suppressing the C2 H2 adsorption. Based on this strategy, two new ultramicroporous PCP physisorbents that are isostructural were synthesised. They exhibited the highest CO2 uptake and CO2 /C2 H2 volume uptake ratio at 298 K. Origin of this specific selectivity was verified by detailed density functional theory calculations. The breakthrough separation performances with remarkable stability and recyclability of both the PCPs render them relevant materials for C2 H2 purification from CO2 /C2 H2 mixtures.

SELECTION OF CITATIONS
SEARCH DETAIL
...