Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 901: 165859, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37516175

ABSTRACT

Wastewater is discarded from several sources, including industry, livestock, fertilizer application, and municipal waste. If the disposed of wastewater has not been treated and processed before discharge to the environment, pathogenic microorganisms and toxic chemicals are accumulated in the disposal area and transported into the surface waters. The presence of harmful microbes is responsible for thousands of human deaths related to water-born contamination every year. To be able to take the necessary step and quick action against the possible presence of harmful microorganisms and substances, there is a need to improve the effective speed of identification and treatment of these problems. Biosensors are such devices that can give quantitative information within a short period of time. There have been several biosensors developed to measure certain parameters and microorganisms. The discovered biosensors can be utilized for the detection of axenic and mixed microbial strains from the wastewaters. Biosensors can further be developed for specific conditions and environments with an in-depth understanding of microbial organization and interaction within that community. In this regard, bacteriophage-based biosensors have become a possibility to identify specific live bacteria in an infected environment. This paper has investigated the current scenario of microbial community analysis and biosensor development in identifying the presence of pathogenic microorganisms.

2.
Sci Total Environ ; 862: 160723, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36496019

ABSTRACT

Wastewater treatment is an essential process for public health and a sustainable ecosystem. Inadequate wastewater treatment can lead to the release of organic and inorganic pollutants and pathogenic bacteria into the receiving waters which could be further utilized for recreation purposes. The interaction between bacteriophage and bacteria in a wastewater treatment plant plays a major role in maintaining the treatment process. Phage therapy has been proposed as an alternative to conventional treatment methods as bacteriophages can be used on specific targets and leave useful bacteria unharmed. The bacterial species, which are responsible for bulking, foaming, and biofilm formation in a wastewater treatment plant (WWTP) have been identified and their respective phages are isolated to control their growth. Phages with lytic life cycles are preferred to lysogenic. Lytic phages can kill the specific target as they lyse the cell, infect most of the hosts, and have an immediate effect on controlling problems caused by bacteria in a WWTP. The bacteriophages such as T7, SPI1, GTE7, PhaxI, MAG1, MAG2, ϕPh_Se01, ϕPh_Se02, and Bxb1 have been investigated for the removal of bacterial biofilms from wastewater. Novel experimental setups have improved the efficiency of phage therapy in small-scale and pilot-scale experiments. Much more in-depth knowledge of the microbial community and their interaction would help promote the usage of phage therapy in large-scale wastewater treatments. This paper has covered the recent advancements in phage therapy as an effective biocontrol of pathogenic bacteria in the wastewater treatment process and has looked at certain shortcomings that have to be improved.


Subject(s)
Bacteriophages , Biofilms , Water Purification , Bacteria , Ecosystem , Wastewater , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...