Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cartilage ; 7(1): 16-28, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26958314

ABSTRACT

OBJECTIVE: The efficacy and safety of BST-CarGel, a chitosan-based medical device for cartilage repair, was compared with microfracture alone at 1 year during a multicenter randomized controlled trial (RCT) in the knee. The quality of repair tissue of osteochondral biopsies collected from a subset of patients was compared using blinded histological assessments. METHODS: The international RCT evaluated repair tissue quantity and quality by 3-dimensional quantitative magnetic resonance imaging as co-primary endpoints at 12 months. At an average of 13 months posttreatment, 21/41 BST-CarGel and 17/39 microfracture patients underwent elective second look arthroscopies as a tertiary endpoint, during which ICRS (International Cartilage Repair Society) macroscopic scoring was carried out, and osteochondral biopsies were collected. Stained histological sections were evaluated by blinded readers using ICRS I and II histological scoring systems. Collagen organization was evaluated using a polarized light microscopy score. RESULTS: BST-CarGel treatment resulted in significantly better ICRS macroscopic scores (P = 0.0002) compared with microfracture alone, indicating better filling, integration, and tissue appearance. Histologically, BST-CarGel resulted in a significant improvement of structural parameters-Surface Architecture (P = 0.007) and Surface/Superficial Assessment (P = 0.042)-as well as cellular parameters-Cell Viability (P = 0.006) and Cell Distribution (P = 0.032). No histological parameters were significantly better for the microfracture group. BST-CarGel treatment also resulted in a more organized repair tissue with collagen stratification more similar to native hyaline cartilage, as measured by polarized light microscopy scoring (P = 0.0003). CONCLUSION: Multiple and independent analyses in this biopsy substudy demonstrated that BST-CarGel treatment results in improved structural and cellular characteristics of repair tissue at 1 year posttreatment compared with microfracture alone, supporting previously reported results by quantitative magnetic resonance imaging.

2.
Cartilage ; 6(2): 62-72, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26069709

ABSTRACT

OBJECTIVE: The efficacy and safety of BST-CarGel®, a chitosan scaffold for cartilage repair was compared with microfracture alone at 1 year during a multicenter randomized controlled trial in the knee. This report was undertaken to investigate 5-year structural and clinical outcomes. DESIGN: The international randomized controlled trial enrolled 80 patients, aged 18 to 55 years, with grade III or IV focal lesions on the femoral condyles. Patients were randomized to receive BST-CarGel® treatment or microfracture alone, and followed standardized 12-week rehabilitation. Co-primary endpoints of repair tissue quantity and quality were evaluated by 3-dimensional MRI quantification of the degree of lesion filling (%) and T2 relaxation times. Secondary endpoints were clinical benefit measured with WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) questionnaires and safety. General estimating equations were used for longitudinal statistical analysis of repeated measures. RESULTS: Blinded MRI analysis demonstrated that BST-CarGel®-treated patients showed a significantly greater treatment effect for lesion filling (P = 0.017) over 5 years compared with microfracture alone. A significantly greater treatment effect for BST-CarGel® was also found for repair tissue T2 relaxation times (P = 0.026), which were closer to native cartilage compared to the microfracture group. BST-CarGel® and microfracture groups showed highly significant improvement at 5 years from pretreatment baseline for each WOMAC subscale (P < 0.0001), and there were no differences between the treatment groups. Safety was comparable for both groups. CONCLUSIONS: BST-CarGel® was shown to be an effective mid-term cartilage repair treatment. At 5 years, BST-CarGel® treatment resulted in sustained and significantly superior repair tissue quantity and quality over microfracture alone. Clinical benefit following BST-CarGel® and microfracture treatment were highly significant over baseline levels.

3.
J Bone Joint Surg Am ; 95(18): 1640-50, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-24048551

ABSTRACT

BACKGROUND: Microfracture, the standard of care, is recognized to be an incomplete solution for cartilage damage. BST-CarGel, a chitosan-based medical device, is mixed with autologous whole blood and is applied to a microfractured cartilage lesion in which it physically stabilizes the clot and guides and enhances marrow-derived repair. An international, multicenter, randomized controlled trial was conducted to evaluate BST-CarGel treatment compared with microfracture alone in the repair of cartilage lesions in the knee. METHODS: Eighty patients between the ages of eighteen and fifty-five years with a single, symptomatic focal lesion on the femoral condyles were randomized to BST-CarGel and microfracture treatment (n = 41) or microfracture treatment alone (n = 39). The primary end points of repair tissue quantity and quality at twelve months were assessed by quantitative three-dimensional magnetic resonance imaging measuring the degree of lesion filling and T2 relaxation time with use of standardized one and twelve-month posttreatment scans. The secondary end point at twelve months was clinical benefit determined with the Western Ontario and McMaster Universities Osteoarthritis Index. The tertiary end point was quality of life determined by the Short Form-36. Safety was assessed through the recording of adverse events. RESULTS: Patient baseline characteristics were similar in the two groups, although baseline lesion areas were slightly larger on quantitative magnetic resonance imaging for the BST-CarGel group compared with the microfracture group. Blinded quantitative magnetic resonance imaging analysis demonstrated that, at twelve months, when compared with microfracture treatment alone, BST-CarGel treatment met both primary end points by achieving statistical superiority for greater lesion filling (p = 0.011) and more hyaline cartilage-like T2 values (p = 0.033). The lesion filling values were 92.8% ± 2.0% for the BST-CarGel treatment group and 85.2% ± 2.1% for the microfracture treatment group, and the mean T2 values were 70.5 ± 4.5 ms for the BST-CarGel treatment group and 85.0 ± 4.9 ms for the microfracture treatment group. Western Ontario and McMaster Universities Osteoarthritis Index subscales for pain, stiffness, and function yielded equivalent improvement for both groups at twelve months, which were significant (p < 0.0001) from baseline. Treatment safety profiles were considered comparable. CONCLUSIONS: At twelve months, BST-CarGel treatment resulted in greater lesion filling and superior repair tissue quality compared with microfracture treatment alone. Clinical benefit was equivalent between groups at twelve months, and safety was similar.


Subject(s)
Arthroplasty, Subchondral , Arthroscopy/methods , Cartilage, Articular/surgery , Chitosan/therapeutic use , Femur/surgery , Hyaline Cartilage/surgery , Osteoarthritis, Knee/surgery , Prosthesis Design/methods , Adolescent , Adult , Arthroscopy/adverse effects , Female , Humans , Hyaline Cartilage/transplantation , Magnetic Resonance Imaging , Male , Middle Aged , Quality of Life , Treatment Outcome , Wound Healing , Young Adult
4.
J Orthop Res ; 29(8): 1178-84, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21671261

ABSTRACT

Subchondral drilling and microfracture are bone marrow stimulation techniques commonly used for the treatment of cartilage defects. Few studies to date have examined the technical variants which may influence the success of the cartilage repair procedures. This study compared the effect of hole depth (6 mm vs. 2 mm) and hole type (drill vs. microfracture) on chondral defect repair using a mature rabbit model. Results from quantitative histomorphometry and histological scoring showed that deeper versus shallower drilling elicited a greater fill of the cartilage defect with a more hyaline character in the repair matrix indicated by significant improvement (p = 0.021) in the aggregate measure of increased cartilage defect fill, increased glycosaminoglycan and type II collagen content and reduced type I collagen content of total soft repair tissue. Compared to microfracture at the same 2 mm depth, drilling to 2 mm produced a similar quantity and quality of cartilage repair (p = 0.120) according to the aggregate indicator described above. We conclude that the depth of bone marrow stimulation can exert important influences on cartilage repair outcomes.


Subject(s)
Arthroplasty, Subchondral/methods , Animals , Bone Marrow/physiology , Cartilage/growth & development , Female , Rabbits , Treatment Outcome , Wound Healing
5.
Am J Sports Med ; 38(9): 1845-56, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20522834

ABSTRACT

BACKGROUND: Microfracture and drilling elicit a cartilage repair whose quality depends on subchondral bone repair. Alternatively activated (AA) macrophages express arginase-1, release angiogenic factors, and could be potential mediators of trabecular bone repair. HYPOTHESIS: Chitosan-glycerol phosphate (GP)/blood implants elicit arginase-1+ macrophages in vivo through neutrophil-dependent mechanisms and improve trabecular bone repair of drilled defects compared with drilling alone. STUDY DESIGN: Controlled laboratory study. METHODS: Bilateral trochlear cartilage defects were created in 15 rabbits, microdrilled, and treated or not with chitosan-GP/blood implant to analyze AA macrophages, CD-31+ blood vessels, bone, and cartilage repair after 1, 2, or 8 weeks. Neutrophil and macrophage chemotaxis to rabbit subcutaneous implants of autologous blood and chitosan-GP (+/-blood) was quantified at 1 or 7 days. In vitro, sera from human chitosan-GP/blood and whole blood clots cultured at 37 degrees C were analyzed by proteomics and neutrophil chemotaxis assays. RESULTS: Chitosan-GP/blood clots and whole blood clots released a similar profile of chemotactic factors (PDGF-BB, IL-8/CXCL8, MCP-1/CCL2, and no IL-1beta or IL-6), although chitosan clot sera attracted more neutrophils in vitro. Subcutaneous chitosan-GP (+/-blood) implants attracted more neutrophils (P < .001) and AA macrophages than whole blood clots in vivo. In repairing subchondral drill holes, chitosan-GP/blood implant attracted more AA macrophages at 1 and 2 weeks and more blood vessels at 2 weeks compared with drilled controls. Treatment elicited a more complete woven bone repair at 8 weeks than controls (P = .0011) with a more uniform, integrated collagen type II+ cartilage repair tissue. CONCLUSION AND CLINICAL RELEVANCE: AA macrophages may play a role in the regeneration of subchondral bone, and chitosan-GP can attract and transiently accumulate these cells in the repair tissue. The resulting improved subchondral repair could be advantageous toward enhancing integration of a restored chondral surface to the subchondral bone.


Subject(s)
Arthroplasty, Subchondral , Cartilage Diseases/drug therapy , Cartilage Diseases/surgery , Cartilage, Articular/physiology , Chemotactic Factors/biosynthesis , Chemotaxis, Leukocyte/physiology , Chondrogenesis/drug effects , Guided Tissue Regeneration , Macrophages/physiology , Neutrophils/physiology , Adult , Angiogenesis Inducing Agents/metabolism , Animals , Arginase/metabolism , Blood Coagulation/drug effects , Blood Coagulation/physiology , Chemokine CCL2/biosynthesis , Chemokines/biosynthesis , Chitosan/pharmacology , Chitosan/therapeutic use , Coagulants/pharmacology , Coagulants/therapeutic use , Female , Glycerol/pharmacology , Glycerol/therapeutic use , Humans , Interleukin-8/biosynthesis , Macrophages/enzymology , Male , Middle Aged , Models, Animal , Phosphates/pharmacology , Phosphates/therapeutic use , Rabbits , Tissue Scaffolds , Young Adult
6.
J Orthop Res ; 27(11): 1432-8, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19402150

ABSTRACT

Bone marrow stimulation is performed using several surgical techniques that have not been systematically compared or optimized for a desired cartilage repair outcome. In this study, we investigated acute osteochondral characteristics following microfracture and comparing to drilling in a mature rabbit model of cartilage repair. Microfracture holes were made to a depth of 2 mm and drill holes to either 2 mm or 6 mm under cooled irrigation. Animals were sacrificed 1 day postoperatively and subchondral bone assessed by histology and micro-CT. We confirmed one hypothesis that microfracture produces fractured and compacted bone around holes, essentially sealing them off from viable bone marrow and potentially impeding repair. In contrast, drilling cleanly removed bone from the holes to provide access channels to marrow stroma. Our second hypothesis that drilling would cause greater osteocyte death than microfracture due to heat necrosis was not substantiated, because more empty osteocyte lacunae were associated with microfracture than drilling, probably due to shearing and crushing of adjacent bone. Drilling deeper to 6 mm versus 2 mm penetrated the epiphyseal scar in this model and led to greater subchondral hematoma. Our study revealed distinct differences between microfracture and drilling for acute subchondral bone structure and osteocyte necrosis. Additional ongoing studies suggest these differences significantly affect long-term cartilage repair outcome.


Subject(s)
Arthroplasty, Subchondral , Bone Marrow/physiology , Cartilage Diseases/surgery , Knee Injuries/surgery , Animals , Cartilage Diseases/pathology , Debridement , Female , Fracture Healing , Knee Injuries/pathology , Rabbits
7.
J Bone Joint Surg Am ; 87(12): 2671-2686, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16322617

ABSTRACT

BACKGROUND: Microfracture is a surgical procedure that is used to treat focal articular cartilage defects. Although joint function improves following microfracture, the procedure elicits incomplete repair. As blood clot formation in the microfracture defect is an essential initiating event in microfracture therapy, we hypothesized that the repair would be improved if the microfracture defect were filled with a blood clot that was stabilized by the incorporation of a thrombogenic and adhesive polymer, specifically, chitosan. The objectives of the present study were to evaluate (1) blood clot adhesion in fresh microfracture defects and (2) the quality of the repair, at six months postoperatively, of microfracture defects that had been treated with or without chitosan-glycerol phosphate/blood clot implants, using a sheep model. METHODS: In eighteen sheep, two 1-cm2 full-thickness chondral defects were created in the distal part of the femur and treated with microfracture; one defect was made in the medial femoral condyle, and the other defect was made in the trochlea. In four sheep, microfracture defects were created bilaterally; the microfracture defects in one knee received no further treatment, and the microfracture defects in the contralateral knee were filled with chitosan-glycerol phosphate/autologous whole blood and the implants were allowed to solidify. Fresh defects in these four sheep were collected at one hour postoperatively to compare the retention of the chitosan-glycerol phosphate/blood clot with that of the normal clot and to define the histologic characteristics of these fresh defects. In the other fourteen sheep, microfracture defects were made in only one knee and either were left untreated (control group; six sheep) or were treated with chitosan-glycerol phosphate/blood implant (treatment group; eight sheep), and the quality of repair was assessed histologically, histomorphometrically, and biochemically at six months postoperatively. RESULTS: In the defects that were examined one hour postoperatively, chitosan-glycerol phosphate/blood clots showed increased adhesion to the walls of the defects as compared with the blood clots in the untreated microfracture defects. After histological processing, all blood clots in the control microfracture defects had been lost, whereas chitosanglycerol phosphate/blood clot adhered to and was partly retained on the surfaces of the defect. At six months, defects that had been treated with chitosan-glycerol phosphate/blood were filled with significantly more hyaline repair tissue (p < 0.05) compared with control defects. Repair tissue from medial femoral condyle defects that had been treated with chitosan-glycerol phosphate/blood contained more cells and more collagen compared with control defects and showed complete restoration of glycosaminoglycan levels. CONCLUSIONS: Solidification of a chitosan-glycerol phosphate/blood implant in microfracture defects improved cartilage repair compared with microfracture alone by increasing the amount of tissue and improving its biochemical composition and cellular organization.


Subject(s)
Cartilage Diseases/drug therapy , Chitosan/pharmacology , Coagulants/pharmacology , Orthopedic Procedures/methods , Wound Healing/drug effects , Animals , Blood Coagulation/drug effects , Cartilage Diseases/pathology , Cartilage Diseases/surgery , Chitosan/therapeutic use , Coagulants/therapeutic use , Glycerol/pharmacology , Glycerol/therapeutic use , Hyalin/drug effects , Models, Animal , Phosphates/pharmacology , Phosphates/therapeutic use , Prostheses and Implants , Sheep
8.
Biomaterials ; 24(11): 1959-67, 2003 May.
Article in English | MEDLINE | ID: mdl-12615486

ABSTRACT

The biocompatibility and biofouling of the microfabrication materials for a MEMS drug delivery device have been evaluated. The in vivo inflammatory and wound healing response of MEMS drug delivery component materials, metallic gold, silicon nitride, silicon dioxide, silicon, and SU-8(TM) photoresist, were evaluated using the cage implant system. Materials, placed into stainless-steel cages, were implanted subcutaneously in a rodent model. Exudates within the cage were sampled at 4, 7, 14, and 21 days, representative of the stages of the inflammatory response, and leukocyte concentrations (leukocytes/microl) were measured. Overall, the inflammatory responses elicited by these materials were not significantly different than those for the empty cage controls over the duration of the study. The material surface cell density (macrophages or foreign body giant cells, FBGCs), an indicator of in vivo biofouling, was determined by scanning electron microscopy of materials explanted at 4, 7, 14, and 21 days. The adherent cellular density of gold, silicon nitride, silicon dioxide, and SU-8(TM) were comparable and statistically less (p<0.05) than silicon. These analyses identified the MEMS component materials, gold, silicon nitride, silicon dioxide, SU-8(TM), and silicon as biocompatible, with gold, silicon nitride, silicon dioxide, and SU-8(TM) showing reduced biofouling.


Subject(s)
Biocompatible Materials/adverse effects , Drug Delivery Systems/adverse effects , Drug Delivery Systems/instrumentation , Drug Implants/adverse effects , Foreign-Body Reaction/diagnosis , Foreign-Body Reaction/etiology , Materials Testing/methods , Animals , Back , Cell Adhesion , Drug Delivery Systems/methods , Electronics , Exudates and Transudates/immunology , Exudates and Transudates/metabolism , Female , Leukocyte Count , Miniaturization , Muscles , Myositis/diagnosis , Myositis/etiology , Rats , Rats, Sprague-Dawley , Surface Properties
9.
J Biomed Mater Res ; 62(2): 163-8, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12209935

ABSTRACT

Within the complex environment of an implanted cardiovascular device comprised of dynamic flow and foreign materials, phagocytic neutrophils may be ineffective in combating infection due to cellular responses to shear stress. This may be explained, in part, by our recent reports of apoptosis of biomaterial-adherent leukocytes induced through exposure to shear stress. Here we utilize a rotating disk system to generate physiologically relevant shear stress levels (0-18 dynes/cm(2)) at the surface of a polyetherurethane urea (PEUU) and investigate neutrophil intracellular pathways involved in shear-induced apoptosis. In situ detection of activated caspases, the enzymatic mediators of the apoptosis cascade, showed qualitatively that these proteases participate in shear-induced apoptosis and are activated in a shear-dependent manner. The involvement of caspase 3 was confirmed through immunoprecipitation and immunoblotting of extracted neutrophil proteins. Comparative studies with neutrophils adherent under static conditions demonstrated time-dependent activation of caspases in TNF-alpha/cycloheximide-induced apoptosis, for which caspase-3 also was implicated. These findings are the first steps toward elucidation of the mechanisms behind the inappropriate induction of apoptosis by adhesion to biomaterials, which may contribute to the development and persistence of device-related infections.


Subject(s)
Apoptosis/physiology , Biocompatible Materials , Caspases/metabolism , Enzyme Activation/physiology , Neutrophils/physiology , Apoptosis/drug effects , Caspase 3 , Cell Adhesion , Humans , Immunoblotting , In Situ Hybridization , In Vitro Techniques , Neutrophils/drug effects , Precipitin Tests , Stress, Mechanical , Tumor Necrosis Factor-alpha/pharmacology
10.
Proc Natl Acad Sci U S A ; 99(16): 10287-92, 2002 Aug 06.
Article in English | MEDLINE | ID: mdl-12122211

ABSTRACT

An in vivo rat cage implant system was used to identify potential surface chemistries that prevent failure of implanted biomedical devices and prostheses by limiting monocyte adhesion and macrophage fusion into foreign-body giant cells while inducing adherent-macrophage apoptosis. Hydrophobic, hydrophilic, anionic, and cationic surfaces were used for implantation. Analysis of the exudate surrounding the materials revealed no differences between surfaces in the types or levels of cells present. Conversely, the proportion of adherent cells undergoing apoptosis was increased significantly on anionic and hydrophilic surfaces (46 +/- 3.7 and 57 +/- 5.0%, respectively) when compared with the polyethylene terephthalate base surface. Additionally, hydrophilic and anionic substrates provided decreased rates of monocyte/macrophage adhesion and fusion. These studies demonstrate that biomaterial-adherent cells undergo material-dependent apoptosis in vivo, rendering potentially harmful macrophages nonfunctional while the surrounding environment of the implant remains unaffected.


Subject(s)
Apoptosis , Coated Materials, Biocompatible/chemistry , Macrophages/physiology , Animals , Anions , Cell Adhesion , Female , Hydrophobic and Hydrophilic Interactions , Macrophages/cytology , Rats , Rats, Sprague-Dawley
11.
J Biomed Mater Res ; 60(1): 148-58, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11835170

ABSTRACT

Monocytes play a critical role as both phagocytes and mediators of inflammatory responses in the prevention of cardiovascular device-related infections. However, persistent infection of these devices still occurs and may be attributed to deleterious cellular alterations resulting from monocyte interactions with a foreign material in an environment of dynamic flow. Thus, the effects of both shear stress and adhesion to material surfaces on human monocyte apoptosis were investigated. A rotating disk system generated physiologically relevant shear stress levels (0-14 dyn/cm(2)), and shear-related apoptosis occurring in adherent monocytes was characterized. Using annexin V analysis, apoptosis of polyurethane-adherent monocytes under shear for 4 h increased to levels >70% with increasing shear in a near-linear fashion (r2 = 0.713). It was qualitatively confirmed using confocal microscopy that filamentous (F)-actin distribution was altered, that DNA fragmentation occurred, and that activated caspases were involved in shear-induced apoptosis. Static studies determined that spontaneous apoptosis was material-dependent over 72 h by demonstrating marked differences between apoptosis of monocytes adherent to a polyurethane compared to an alkyl-modified glass. Treatment with TNF-alpha augmented this material dependency in a dose-dependent fashion over time. F-actin content of TNF-alpha-treated cells decreased to <62% of untreated cells. We conclude that concomitant effects from both material surfaces and dynamic flow mediate human monocyte apoptosis and may have serious implications in the context of implanted cardiovascular device infection.


Subject(s)
Apoptosis/physiology , Monocytes/physiology , Actins/chemistry , Annexin A5 , Biocompatible Materials , Caspase Inhibitors , Caspases/metabolism , Cell Adhesion , Enzyme Inhibitors/pharmacology , Humans , In Situ Nick-End Labeling , In Vitro Techniques , Microscopy, Electron, Scanning , Polyurethanes , Rheology , Signal Transduction/drug effects , Stress, Mechanical , Surface Properties , Tumor Necrosis Factor-alpha/pharmacology
12.
J Control Release ; 78(1-3): 235-47, 2002 Jan 17.
Article in English | MEDLINE | ID: mdl-11772464

ABSTRACT

Cardiovascular disease processes such as atherosclerosis, restenosis, and inflammation are typically localized to discrete regions of the vasculature, affording great opportunity for targeted pharmacological treatment. Liposomes are potentially advantageous targeted drug carriers for such intravascular applications. To facilitate their use as drug delivery vehicles, we have considered three components of liposome design: (i) identification of candidate cell surface receptors for targeting; (ii) identification of ligands that maintain binding specificity and affinity; and (iii) prevention of rapid nonspecific clearance of liposomes into the reticuloendothelial organs. In this report, we describe our work in developing liposomal surface modifications that address both targeting and clearance. An arginine-glycine-aspartic acid (RGD) containing peptide was used as a model ligand to target liposomes to the integrin GPIIb-IIIa on activated platelets. Additionally, oligodextran surfactants incorporated into liposomes provided insight into the effect of vesicle perturbations on liposome clearance, and the importance of molecular geometry in designing oligosaccharide surface modifications. Together these studies demonstrate the feasibility of using peptides to guide liposomes to desired receptors, and illustrate the influence of vesicle stability on liposome interactions in vivo. Furthermore, they underscore the importance of simultaneously considering both targeting specificity and vesicle longevity in the design of effective targeted drug delivery systems.


Subject(s)
Cardiovascular Diseases/drug therapy , Drug Delivery Systems , Liposomes/administration & dosage , Oligopeptides/administration & dosage , Oligosaccharides/administration & dosage , Animals , Dextrans/administration & dosage , Female , Liposomes/chemistry , Mice , Mice, Inbred BALB C , Platelet Glycoprotein GPIIb-IIIa Complex/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...