Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mil Med ; 188(Suppl 6): 520-528, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37948281

ABSTRACT

INTRODUCTION: The helmet is an ideal platform to mount technology that gives U.S. Soldiers an advantage over the enemy; the total system is recognized quantitatively as head-supported mass (HSM). The stress placed on the head and neck is magnified by adding mass and increasing the center of mass offset away from the atlanto-occipital complex, the head's pivot point on the spine. Previous research has focused on HSM-related spinal degeneration and performance decrement in mounted environments. The increased capabilities and protection provided by helmet systems for dismounted Soldiers have made it necessary to determine the boundaries of HSM and center of mass offset unique to dismounted operations. MATERIALS AND METHODS: A human subject volunteer study was conducted to characterize the head and neck exposures and assess the impact of HSM on performance in a simulated field-dismounted operating environment. Data were analyzed from 21 subjects who completed the Load Effects Assessment Program-Army obstacle course at Fort Benning, GA, while wearing three different experimental HSM configurations. Four variable groups (physiologic/biomechanical, performance, kinematic, and subjective) were evaluated as performance assessments. Weight moments (WMs) corresponding to specific performance decrement levels were calculated using the quantitative relationships developed between each metric and the study HSM configurations. Data collected were used to develop the performance decrement HSM threshold criteria based on an average of 10% total performance decrement of dismounted Soldier performance responses. RESULTS: A WM of 134 N-cm about the atlanto-occipital complex was determined as the preliminary threshold criteria for an average of 10% total performance decrement. A WM of 164 N-cm was calculated for a corresponding 25% average total performance decrement. CONCLUSIONS: The presented work is the first of its kind specifically for dismounted Soldiers. Research is underway to validate these limits and develop dismounted injury risk guidance.


Subject(s)
Military Personnel , Humans , Neck , Head , Head Protective Devices , Biomechanical Phenomena
2.
Mil Med ; 186(11-12): e1149-e1156, 2021 11 02.
Article in English | MEDLINE | ID: mdl-33277987

ABSTRACT

INTRODUCTION: The U.S. Army conducts airborne operations in order to insert soldiers into combat. Military airborne operations are physically demanding activities with a unique loading environment compared with normal duties. A significant amount of research surrounding airborne operations has focused on assessing the incidence and type of associated injuries as well as the potential risk factors for injuries. During parachute opening shock and other high-acceleration events (e.g., fixed wing flight or vehicle crashes), the neck may be vulnerable to injury if inertial loads overcome the voluntary muscular control of the cervical spine and soft tissue structures. A recent epidemiological survey of sport skydivers showed that the neck, shoulders, and back were the most frequently reported sites of musculoskeletal pain. In addition, the survey indicated that wing loading (a measure of the jumper's weight divided by the size of the parachute canopy) was a potential contributing factor for developing musculoskeletal pain. Recently, there have been efforts to measure the severity of parachute opening shock as an additional potential risk factor for injury; however, no studies have measured both head and body accelerations and no studies have measured head or body angular rate during parachute opening shock. The purpose of this study was to measure and characterize the accelerations and angular rates of both the head and body during parachute opening shock as well as investigate potential factors contributing to higher severity opening shock, which may link to the development of musculoskeletal pain or injury. MATERIALS AND METHODS: Data were collected from the U.S. Army Parachute Team, The Golden Knights, under an approved Medical Research and Material Command Institutional Review Board protocol. Subjects were instrumented with a helmet- and body-mounted sensor package, which included three angular rate sensors and three single-axis accelerometers each. Data were collected at 2,500 samples per second. Kruskal-Wallis tests were used to determine if helmet-mounted equipment (e.g., cameras), neck length, neck circumference, or wing loading (the ratio of jump weight to the size of the main parachute canopy) affected the accelerations or angular rates of the head or body. RESULTS: A total of 54 jumps conducted by 19 experienced free-fall jumpers were analyzed. For the head, the mean (± SD) resultant accelerations and angular rates were 5.8 (± 1.6) g and 255.9 (± 74.2) degrees per second (deg/s), respectively. For the body, the resultant accelerations and angular rates were 4.3 (± 1.5) g and 181.3 (± 61.2) deg/s, respectively. A wing loading above 1.4 pounds per square foot (lb/ft2) was found to have a significant effect on head (P = .001) and body (P = .001) resultant acceleration as well as body angular rate about the Y-axis (P = .001). CONCLUSIONS: There is evidence to suggest that wing loading has an influence on individual head and body resultant accelerations. However, no significant effects were found for the other variables (e.g., neck length and circumference, helmet-mounted equipment, etc.). Future research should focus on identifying additional factors that result in changes in accelerations and angular rates of the head and body during parachute opening shock events.


Subject(s)
Aviation , Military Personnel , Acceleration , Biomechanical Phenomena , Head Protective Devices , Humans
3.
Front Physiol ; 11: 837, 2020.
Article in English | MEDLINE | ID: mdl-32754055

ABSTRACT

Aviation and space medicine face many common musculoskeletal challenges that manifest in crew of rotary-wing aircraft (RWA), high-performance jet aircraft (HPJA), and spacecraft. Furthermore, many astronauts are former pilots of RWA or HPJA. Flight crew are exposed to recurrent musculoskeletal risk relating to the extreme environments in which they operate, including high-gravitational force equivalents (g-forces), altered gravitational vectors, vibratory loading, and interaction with equipment. Several countermeasures have been implemented or are currently under development to reduce the magnitude and frequency of these injuries. Cervical and lumbar spine, as well as extremity injuries, are common to aviators and astronauts, and occur in training and operational environments. Stress on the spinal column secondary to gravitational loading and unloading, ± vibration are implicated in the development of pain syndromes and intervertebral disk pathology. While necessary for operation in extreme environments, crew-support equipment can contribute to musculoskeletal strain or trauma. Crew-focused injury prevention measures such as stretching, exercise, and conditioning programs have demonstrated the potential to prevent pre-flight, in-flight, and post-flight injuries. Equipment countermeasures, especially those addressing helmet mass and center of gravity and spacesuit ergonomics, are also key in injury prevention. Furthermore, behavioral and training interventions are required to ensure that crew are prepared to safely operate when faced with these exposures. The common operational exposures and risk factors between RWA and HPJA pilots and astronauts lend themselves to collaborative studies to develop and improve countermeasures. Countermeasures require time and resources, and careful consideration is warranted to ensure that crew have access to equipment and expertise necessary to implement them. Further investigation is required to demonstrate long-term success of these interventions and inform flight surgeon decision-making about individualized treatment. Lessons learned from each population must be applied to the others to mitigate adverse effects on crew health and well-being and mission readiness.

4.
Mil Med ; 184(Suppl 1): 245-250, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30901469

ABSTRACT

In order to limit the aviator's exposure to potentially unsafe helmet configurations, the U.S. Army Aeromedical Research Laboratory (USAARL) developed the USAARL Head-supported mass (HSM) Performance Curve and Acute Injury Risk Curve as guidelines for Army aviation HSM. These Curves remain the only established guidelines for Army HSM, but have limited applicability outside of the aviation environment. Helmet developers and program managers have requested guidelines be developed for the dismounted, ground-mounted, and airborne operating environments that consider currently fielded and proposed HSM configurations. The aim of this project was to measure mass properties (mass and center of mass offset) of currently fielded and proposed HSM configurations and compare them against the existing USAARL HSM Curve guidelines. Mass properties were collected for 71 unique dismounted and ground-mounted HSM configurations. None of the 71 HSM configurations met the Acute Injury Risk Curve recommendations, and only 11 of the 71 configurations met Performance Curve recommendations. While some helmets fell within acceptable limits, the addition of night vision goggles and protective masks pushed all configurations outside of the recommended guidelines. Future guidelines will need to be expanded to consider the operating environment, movement techniques, and primary mechanism of injury.


Subject(s)
Acceleration/adverse effects , Guidelines as Topic/standards , Head Protective Devices/standards , Head/pathology , Accidents, Traffic/statistics & numerical data , Head/physiopathology , Head Protective Devices/adverse effects , Head Protective Devices/statistics & numerical data , Humans , Research , Walking/injuries , Walking/statistics & numerical data
5.
J Biomech Eng ; 136(10): 101002, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25010637

ABSTRACT

Whole body vibration has been postulated to contribute to the onset of back pain. However, little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to measure the frequency and corresponding muscle responses of seated male volunteers during whole body vibration exposures along the vertical and anteroposterior directions to define the transmissibility and associated muscle activation responses for relevant whole body vibration exposures. Seated human male volunteers underwent separate whole body vibration exposures in the vertical (Z-direction) and anteroposterior (X-direction) directions using sinusoidal sweeps ranging from 2 to 18 Hz, with a constant amplitude of 0.4 g. For each vibration exposure, the accelerations and displacements of the seat and lumbar and thoracic spines were recorded. In addition, muscle activity in the lumbar and thoracic spines was recorded using electromyography (EMG) and surface electrodes in the lumbar and thoracic region. Transmissibility was determined, and peak transmissibility, displacement, and muscle activity were compared in each of the lumbar and thoracic regions. The peak transmissibility for vertical vibrations occurred at 4 Hz for both the lumbar (1.55 ± 0.34) and thoracic (1.49 ± 0.21) regions. For X-directed seat vibrations, the transmissibility ratio in both spinal regions was highest at 2 Hz but never exceeded a value of 1. The peak muscle response in both spinal regions occurred at frequencies corresponding to the peak transmissibility, regardless of the direction of imposed seat vibration: 4 Hz for the Z-direction and 2-3 Hz for the X-direction. In both vibration directions, spinal displacements occurred primarily in the direction of seat vibration, with little off-axis motion. The occurrence of peak muscle responses at frequencies of peak transmissibility suggests that such frequencies may induce greater muscle activity, leading to muscle fatigue, which could be a contributing mechanism of back pain.


Subject(s)
Lumbar Vertebrae , Mechanical Phenomena , Muscles , Posture , Thoracic Vertebrae , Vibration , Volunteers , Adult , Biomechanical Phenomena , Electromyography , Humans , Lumbar Vertebrae/physiology , Male , Muscles/physiology , Thoracic Vertebrae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...