Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; : e202400444, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996191

ABSTRACT

A new DNA aptamer that binds to the target Thiazole Orange-biotin (TO1-biotin) was isolated after nine rounds of in vitro selection. The selection was performed on streptavidin-coated beads with the target bound to the surface and with free dye in solution in higher selection rounds to select for slower off-rate binding. Using next-generation sequencing (NGS), the libraries after the 4th and 9th rounds of selection were sequenced to identify enriched sequences. Several sequence families emerged, showing superior fluorescence enhancement and high affinity for the target compared to the other families obtained by NGS analysis. These sequence families were further studied to understand the binding interactions better. Primary sequence and secondary structure analysis tools were used to identify a hypothetical three-tiered G-quadruplex motif for these families. This indicates that the TO1-biotin DNA aptamer identified here uses a similar ligand-binding topology to the original Mango RNA aptamer.

2.
Biochem Biophys Res Commun ; 711: 149908, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38613867

ABSTRACT

RNA aptamers are oligonucleotides, selected through Systematic Evolution of Ligands by EXponential Enrichment (SELEX), that can bind to specific target molecules with high affinity. One such molecule is the RNA aptamer that binds to a blue-fluorescent Hoechst dye that was modified with bulky t-Bu groups to prevent non-specific binding to DNA. This aptamer has potential for biosensor applications; however, limited information is available regarding its conformation, molecular interactions with the ligand, and binding mechanism. The study presented here aims to biophysically characterize the Hoechst RNA aptamer when complexed with the t-Bu Hoechst dye and to further optimize the RNA sequence by designing and synthesizing new sequence variants. Each variant aptamer-t-Bu Hoechst complex was evaluated through a combination of fluorescence emission, native polyacrylamide gel electrophoresis, fluorescence titration, and isothermal titration calorimetry experiments. The results were used to design a minimal version of the aptamer consisting of only 21 nucleotides. The performed study also describes a more efficient method for synthesizing the t-Bu Hoechst dye derivative. Understanding the biophysical properties of the t-Bu Hoechst dye-RNA complex lays the foundation for nuclear magnetic resonance spectroscopy studies and its potential development as a building block for an aptamer-based biosensor that can be used in medical, environmental or laboratory settings.


Subject(s)
Aptamers, Nucleotide , Aptamers, Nucleotide/chemistry , Fluorescent Dyes/chemistry , Nucleic Acid Conformation , Biosensing Techniques/methods , Base Sequence , Spectrometry, Fluorescence/methods , SELEX Aptamer Technique/methods , Calorimetry/methods , RNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...