Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
J Fish Biol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757771

ABSTRACT

Despite being a heavily fished species, little is known about the movements of silky sharks (Carcharhinus falciformis). In this study, we report the longest (in duration and distance traveled) and most spatially extensive recorded migration for a silky shark. This shark, tagged with a fin-mount satellite transmitter at the Galapagos Islands, traveled >27,666 km over 546 days, making two westerly migrations into international waters as far as 4755 km from the tagging location. These extensive movements in an area with high international fishing effort highlights the importance of understanding silky shark migrations to inform management practices.

2.
Proc Biol Sci ; 290(2012): 20232291, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38052444

ABSTRACT

Niche partitioning among closely related, sympatric species is a fundamental concept in ecology, and its mechanisms are of broad interest for understanding ecosystem functioning and predicting the impacts of human-driven environmental change. However, identifying mechanisms by which top marine predators partition available resources has been especially challenging given the difficulty of quantifying resource use of large pelagic animals. In the eastern tropical Pacific (ETP), three large, highly mobile and ecologically similar pelagic predators (blue marlin (Makaira nigricans), black marlin (Istiompax indica) and sailfish (Istiophorus platypterus)) coexist in a vertically compressed habitat. To evaluate each species' ecological niche, we leveraged a decade of recreational fisheries data, multi-year satellite tracking with high-resolution dive data, and stable isotope analysis. Fishery interaction and telemetry-based three-dimensional seasonal utilization distributions suggested high spatial and temporal overlap among species; however, seasonal and diel variability in diving behaviour produced spatial partitioning, leading to low trophic overlap among species. Expanding oxygen minimum zones will reduce the available vertical habitat within predator guilds, likely leading to increases in interspecific competition. Thus, understanding the mechanisms of habitat partitioning among predators in the vertically compressed ETP can provide insight into how predators in other ocean regions may respond to vertically limited habitats.


Subject(s)
Ecosystem , Perciformes , Animals , Humans , Ecology , Nutritional Status
3.
J Anim Ecol ; 92(8): 1658-1671, 2023 08.
Article in English | MEDLINE | ID: mdl-37283143

ABSTRACT

Pelagic predators must contend with low prey densities that are irregularly distributed and dynamic in space and time. Based on satellite imagery and telemetry data, many pelagic predators will concentrate horizontal movements on ephemeral surface fronts-gradients between water masses-because of enhanced local productivity and increased forage fish densities. Vertical fronts (e.g. thermoclines, oxyclines) can be spatially and temporally persistent, and aggregate lower trophic level and diel vertically migrating organisms due to sharp changes in temperature, water density or available oxygen. Thus, vertical fronts represent a stable and potentially energy rich habitat feature for diving pelagic predators but remain little explored in their capacity to enhance foraging opportunities. Here, we use a novel suite of high-resolution biologging data, including in situ derived oxygen saturation and video, to document how two top predators in the pelagic ecosystem exploit the vertical fronts created by the oxygen minimum zone of the eastern tropical Pacific. Prey search behaviour was dependent on dive shape, and significantly increased near the thermocline and hypoxic boundary for blue marlin Makaira nigricans and sailfish Istiophorus platypterus, respectively. Further, we identify a behaviour not yet reported for pelagic predators, whereby the predator repeatedly dives below the thermocline and hypoxic boundary (and by extension, below the prey). We hypothesize this behaviour is used to ambush prey concentrated at the boundaries from below. We describe how habitat fronts created by low oxygen environments can influence pelagic ecosystems, which will become increasingly important to understand in the context of global change and expanding oxygen minimum zones. We anticipate that our findings are shared among many pelagic predators where strong vertical fronts occur, and additional high-resolution tagging is warranted to confirm this.


Subject(s)
Ecosystem , Oxygen , Animals , Fishes , Feeding Behavior , Water , Predatory Behavior
4.
Oecologia ; 201(3): 673-688, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36930348

ABSTRACT

The coexistence of ecologically and morphologically similar species is often facilitated by the partitioning of ecological niches. While subordinate species can reduce competition with dominant competitors through spatial and/or trophic segregation, empirical support from wild settings, particularly those involving large-bodied taxa in marine ecosystems, are rare. Shark nursery areas provide an opportunity to investigate the mechanisms of coexistence. We used experimental and field studies of sympatric juvenile sharks (blacktip reef shark, Carcharhinus melanopterus; sicklefin lemon shark, Negaprion acutidens) to investigate how competitive ability influenced realized niches at St. Joseph Atoll, Seychelles. Captive trials revealed that sicklefin lemon sharks were dominant over blacktip reef sharks, consistently taking food rewards. In the field, blacktip reef sharks were captured over a broader area than sicklefin lemon sharks, but daily space use of actively tracked sharks showed a high degree of overlap across microhabitats. While stomach contents analysis revealed that blacktip reef shark diets included a broader range of prey items, stable isotope analysis demonstrated significantly higher mean δ13C values for sicklefin lemon sharks, suggesting diverging dietary preferences. Overall, our results matched theoretical predictions of subordinate competitors using a greater range of habitats and displaying broader feeding niches than competitively dominant species. While separating the realized and fundamental niche of marine predators is complicated, we provide evidence that resource partitioning is at least partially driven by interspecific competition.


Subject(s)
Ecosystem , Sharks , Animals , Nutritional Status
5.
iScience ; 26(1): 105815, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36632067

ABSTRACT

Despite increasing threats of extinction to Elasmobranchii (sharks and rays), whole genome-based conservation insights are lacking. Here, we present chromosome-level genome assemblies for the Critically Endangered great hammerhead (Sphyrna mokarran) and the Endangered shortfin mako (Isurus oxyrinchus) sharks, with genetic diversity and historical demographic comparisons to other shark species. The great hammerhead exhibited low genetic variation, with 8.7% of the 2.77 Gbp genome in runs of homozygosity (ROH) > 1 Mbp and 74.4% in ROH >100 kbp. The 4.98 Gbp shortfin mako genome had considerably greater diversity and <1% in ROH > 1 Mbp. Both these sharks experienced precipitous declines in effective population size (Ne) over the last 250 thousand years. While shortfin mako exhibited a large historical Ne that may have enabled the retention of higher genetic variation, the genomic data suggest a possibly more concerning picture for the great hammerhead, and a need for evaluation with additional individuals.

6.
Sci Rep ; 13(1): 1484, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707627

ABSTRACT

Foraging behavior and interaction with prey is an integral component of the ecological niche of predators but is inherently difficult to observe for highly mobile animals in the marine environment. Billfishes have been described as energy speculators, expending a large amount of energy foraging, expecting to offset high costs with periodic high energetic gain. Surface-based group feeding of sailfish, Istiophorus platypterus, is commonly observed, yet sailfish are believed to be largely solitary roaming predators with high metabolic requirements, suggesting that individual foraging also represents a major component of predator-prey interactions. Here, we use biologging data and video to examine daily activity levels and foraging behavior, estimate metabolic costs, and document a solitary predation event for a 40 kg sailfish. We estimate a median active metabolic rate of 218.9 ± 70.5 mgO2 kg-1 h-1 which increased to 518.8 ± 586.3 mgO2 kg-1 h-1 during prey pursuit. Assuming a successful predation, we estimate a daily net energy gain of 2.4 MJ (5.1 MJ acquired, 2.7 MJ expended), supporting the energy speculator model. While group hunting may be a common activity used by sailfish to acquire energy, our calculations indicate that opportunistic individual foraging events offer a net energy return that contributes to the fitness of these highly mobile predators.


Subject(s)
Perciformes , Predatory Behavior , Animals , Ecosystem , Magnesium Oxide
7.
Proc Natl Acad Sci U S A ; 119(20): e2117440119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35533277

ABSTRACT

Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks' horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial "cryptic" lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.


Subject(s)
Sharks , Animals , Endangered Species , Plankton , Ships
8.
Mitochondrial DNA B Resour ; 7(4): 652-654, 2022.
Article in English | MEDLINE | ID: mdl-35434361

ABSTRACT

We present complete mitogenome sequences of three shortfin mako sharks (Isurus oxyrinchus) sampled from the western Pacific, and eastern and western Atlantic oceans. Mitogenome sequence lengths ranged between 16,699 bp and 16,702 bp, and all three mitogenomes contained one non-coding control region, two rRNA genes, 22 tRNA genes, and 13 protein-coding genes. Comparative assessment of five mitogenomes from globally distributed shortfin makos (the current three and two previously published mitogenomes) yielded 98.4% identity, with the protein-coding genes ATP8, ATP6, and ND5 as the most variable regions (sequence identities of 96.4%, 96.5%, and 97.6%, respectively). These mitogenome sequences contribute resources for assessing the genetic population dynamics of this endangered oceanic apex predator.

9.
Ecol Evol ; 12(12): e9642, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36619714

ABSTRACT

The scalloped hammerhead shark, Sphyrna lewini, is a Critically Endangered, migratory species known for its tendency to form iconic and visually spectacular large aggregations. Herein, we investigated the population genetic dynamics of the scalloped hammerhead across much of its distribution in the Eastern Tropical Pacific (ETP), ranging from Costa Rica to Ecuador, focusing on young-of-year animals from putative coastal nursery areas and adult females from seasonal aggregations that form in the northern Galápagos Islands. Nuclear microsatellites and partial mitochondrial control region sequences showed little evidence of population structure suggesting that scalloped hammerheads in this ETP region comprise a single genetic stock. Galápagos aggregations of adults were not comprised of related individuals, suggesting that kinship does not play a role in the formation of the repeated, annual gatherings at these remote offshore locations. Despite high levels of fisheries exploitation of this species in the ETP, the adult scalloped hammerheads here showed greater genetic diversity compared with adult conspecifics from other parts of the species' global distribution. A phylogeographic analysis of available, globally sourced, mitochondrial control region sequence data (n = 1818 sequences) revealed that scalloped hammerheads comprise three distinct matrilines corresponding to the three major world ocean basins, highlighting the need for conservation of these evolutionarily unique lineages. This study provides the first view of the genetic properties of a scalloped hammerhead aggregation, and the largest sample size-based investigation of population structure and phylogeography of this species in the ETP to date.

10.
J Hered ; 112(6): 497-507, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34374783

ABSTRACT

Understanding the population dynamics of highly mobile, widely distributed, oceanic sharks, many of which are overexploited, is necessary to aid their conservation management. We investigated the global population genomics of tiger sharks (Galeocerdo cuvier), a circumglobally distributed, apex predator displaying remarkable behavioral versatility in its diet, habitat use (near coastal, coral reef, pelagic), and individual movement patterns (spatially resident to long-distance migrations). We genotyped 242 tiger sharks from 10 globally distributed locations at more than 2000 single nucleotide polymorphisms. Although this species often conducts massive distance migrations, the data show strong genetic differentiation at both neutral (FST = 0.125-0.144) and candidate outlier loci (FST = 0.570-0.761) between western Atlantic and Indo-Pacific sharks, suggesting the potential for adaptation to the environments specific to these oceanic regions. Within these regions, there was mixed support for population differentiation between northern and southern hemispheres in the western Atlantic, and none for structure within the Indian Ocean. Notably, the results demonstrate a low level of population differentiation of tiger sharks from the remote Hawaiian archipelago compared with sharks from the Indian Ocean (FST = 0.003-0.005, P < 0.01). Given concerns about biodiversity loss and marine ecosystem impacts caused by overfishing of oceanic sharks in the midst of rapid environmental change, our results suggest it imperative that international fishery management prioritize conservation of the evolutionary potential of the highly genetically differentiated Atlantic and Indo-Pacific populations of this unique apex predator. Furthermore, we suggest targeted management attention to tiger sharks in the Hawaiian archipelago based on a precautionary biodiversity conservation perspective.


Subject(s)
Ecosystem , Sharks , Animals , Conservation of Natural Resources , Fisheries , Genomics , Indian Ocean , Sharks/genetics
11.
Front Microbiol ; 12: 605285, 2021.
Article in English | MEDLINE | ID: mdl-33643235

ABSTRACT

Profiles of symbiotic microbial communities ("microbiomes") can provide insight into the natural history and ecology of their hosts. Using high throughput DNA sequencing of the 16S rRNA V4 region, microbiomes of five shark species in South Florida (nurse, lemon, sandbar, Caribbean reef, and tiger) have been characterized for the first time. The microbiomes show species specific microbiome composition, distinct from surrounding seawater. Shark anatomical location (gills, teeth, skin, cloaca) affected the diversity of microbiomes. An in-depth analysis of teeth communities revealed species specific microbial communities. For example, the genus Haemophilus, explained 7.0% of the differences of the teeth microbiomes of lemon and Caribbean reef sharks. Lemon shark teeth communities (n = 11) contained a high abundance of both Vibrio (10.8 ± 26.0%) and Corynebacterium (1.6 ± 5.1%), genera that can include human pathogenic taxa. The Vibrio (2.8 ± 6.34%) and Kordia (3.1 ± 6.0%) genera and Salmonella enterica (2.6 ± 6.4%) were the most abundant members of nurse shark teeth microbial communities. The Vibrio genus was highly represented in the sandbar shark (54.0 ± 46.0%) and tiger shark (5.8 ± 12.3%) teeth microbiomes. The prevalence of genera containing potential human pathogens could be informative in shark bite treatment protocols and future research to confirm or deny human pathogenicity. We conclude that South Florida sharks host species specific microbiomes that are distinct from their surrounding environment and vary due to differences in microbial community composition among shark species and diversity and composition among anatomical locations. Additionally, when considering the confounding effects of both species and location, microbial community diversity and composition varies.

12.
J Fish Biol ; 98(1): 89-101, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32985701

ABSTRACT

The whitespotted eagle ray Aetobatus narinari is a tropical to warm-temperate benthopelagic batoid that ranges widely throughout the western Atlantic Ocean. Despite conservation concerns for the species, its vertical habitat use and diving behaviour remain unknown. Patterns and drivers in the depth distribution of A. narinari were investigated at two separate locations, the western North Atlantic (Islands of Bermuda) and the eastern Gulf of Mexico (Sarasota, Florida, U.S.A.). Between 2010 and 2014, seven pop-up satellite archival tags were attached to A. narinari using three methods: a through-tail suture, an external tail-band and through-wing attachment. Retention time ranged from 0 to 180 days, with tags attached via the through-tail method retained longest. Tagged rays spent the majority of time (82.85 ± 12.17% S.D.) within the upper 10 m of the water column and, with one exception, no rays travelled deeper than ~26 m. One Bermuda ray recorded a maximum depth of 50.5 m, suggesting that these animals make excursions off the fore-reef slope of the Bermuda Platform. Individuals occupied deeper depths (7.42 ± 3.99 m S.D.) during the day versus night (4.90 ± 2.89 m S.D.), which may be explained by foraging and/or predator avoidance. Each individual experienced a significant difference in depth and temperature distributions over the diel cycle. There was evidence that mean hourly depth was best described by location and individual variation using a generalized additive mixed model approach. This is the first study to compare depth distributions of A. narinari from different locations and describe the thermal habitat for this species. Our study highlights the importance of region in describing A. narinari depth use, which may be relevant when developing management plans, whilst demonstrating that diel patterns appear to hold across individuals.


Subject(s)
Animal Identification Systems/instrumentation , Ecosystem , Remote Sensing Technology , Skates, Fish/physiology , Animals , Atlantic Ocean , Diving , Florida , Gulf of Mexico , Satellite Communications , Temperature
13.
Sci Rep ; 10(1): 19753, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184444

ABSTRACT

Ecotourism opportunities in the marine environment often rely heavily on provisioning to ensure the viewing of cryptic species by the public. However, intentional feeding of wildlife can impact numerous aspects of an animals' behavior and ecology. Southern stingrays (Hypanus americana) provisioned at Stingray City Sandbar (SCS) in Grand Cayman have altered diel activity patterns and decreased measures of health. This study looked at seasonal changes in stable isotope (SI) and fatty acid (FA) profiles of provisioned stingrays at SCS. Plasma δ15N was higher in male stingrays (11.86 ± 1.71‰) compared to females (10.70 ± 1.71‰). Lower values for δ15N in males and females were measured in October during low tourist season, suggesting stingrays may be forced to rely on native prey items to supplement the decreased amount of provisioned squid available during this time. Plasma FA profiles were significantly different between sexes and across sampling time points, with FAs 22:6n3, 16:0, 20:5n3, 18:1n3C, 18:0 and 18:1n9T contributing to dissimilarity scores between groups. Dietary FAs primarily contributed to differences between males and females lending further evidence to differences in foraging patterns at SCS, likely due to intraspecific competition. Further, canonical analysis of principal coordinates (CAP) analysis of FA profiles suggest similar diets during peak tourist season and differences in diet between males and females during the low season. This study demonstrates alterations in feeding ecology in stingrays at SCS which is of critical importance for effective management of the SCS aggregation.

14.
Sci Rep ; 10(1): 1661, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32015388

ABSTRACT

Migratory movements in response to seasonal resources often influence population structure and dynamics. Yet in mobile marine predators, population genetic consequences of such repetitious behaviour remain inaccessible without comprehensive sampling strategies. Temporal genetic sampling of seasonally recurring aggregations of planktivorous basking sharks, Cetorhinus maximus, in the Northeast Atlantic (NEA) affords an opportunity to resolve individual re-encounters at key sites with population connectivity and patterns of relatedness. Genetic tagging (19 microsatellites) revealed 18% of re-sampled individuals in the NEA demonstrated inter/multi-annual site-specific re-encounters. High genetic connectivity and migration between aggregation sites indicate the Irish Sea as an important movement corridor, with a contemporary effective population estimate (Ne) of 382 (CI = 241-830). We contrast the prevailing view of high gene flow across oceanic regions with evidence of population structure within the NEA, with early-season sharks off southwest Ireland possibly representing genetically distinct migrants. Finally, we found basking sharks surfacing together in the NEA are on average more related than expected by chance, suggesting a genetic consequence of, or a potential mechanism maintaining, site-specific re-encounters. Long-term temporal genetic monitoring is paramount in determining future viability of cosmopolitan marine species, identifying genetic units for conservation management, and for understanding aggregation structure and dynamics.


Subject(s)
Sharks/genetics , Sharks/physiology , Animal Migration , Animals , Atlantic Ocean , Conservation of Natural Resources , Female , Gene Flow , Genetic Variation , Genetics, Population , Ireland , Male , Microsatellite Repeats , Population Density , Seasons , Spatio-Temporal Analysis
15.
Mitochondrial DNA B Resour ; 5(3): 3498-3499, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33458217

ABSTRACT

We present the mitochondrial genome sequence of a gray reef shark, Carcharhinus amblyrhynchos (Bleeker 1856), a coral reef associated species. This is the first mitogenome for this species from the western Indian Ocean. The mitogenome is 16,705 bp in length, has 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a non-coding control region, and demonstrates a gene arrangement congruent with other shark and most vertebrate species. This mitogenome provides a genomic resource for assisting with population, evolutionary and conservation studies for the gray reef shark, which is increasingly under threat from fisheries.

16.
Proc Natl Acad Sci U S A ; 116(10): 4446-4455, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30782839

ABSTRACT

The white shark (Carcharodon carcharias; Chondrichthyes, Elasmobranchii) is one of the most publicly recognized marine animals. Here we report the genome sequence of the white shark and comparative evolutionary genomic analyses to the chondrichthyans, whale shark (Elasmobranchii) and elephant shark (Holocephali), as well as various vertebrates. The 4.63-Gbp white shark genome contains 24,520 predicted genes, and has a repeat content of 58.5%. We provide evidence for a history of positive selection and gene-content enrichments regarding important genome stability-related genes and functional categories, particularly so for the two elasmobranchs. We hypothesize that the molecular adaptive emphasis on genome stability in white and whale sharks may reflect the combined selective pressure of large genome sizes, high repeat content, high long-interspersed element retrotransposon representation, large body size, and long lifespans, represented across these two species. Molecular adaptation for wound healing was also evident, with positive selection in key genes involved in the wound-healing process, as well as Gene Ontology enrichments in fundamental wound-healing pathways. Sharks, particularly apex predators such as the white shark, are believed to have an acute sense of smell. However, we found very few olfactory receptor genes, very few trace amine-associated receptors, and extremely low numbers of G protein-coupled receptors. We did however, identify 13 copies of vomeronasal type 2 (V2R) genes in white shark and 10 in whale shark; this, combined with the over 30 V2Rs reported previously for elephant shark, suggests this gene family may underlie the keen odorant reception of chondrichthyans.


Subject(s)
Adaptation, Physiological/physiology , Genome , Genomic Instability , Sharks/genetics , Wound Healing/genetics , Animals , DNA Transposable Elements , Genes, p53 , Phylogeny , Proto-Oncogene Proteins/genetics , Selection, Genetic , Sharks/classification , Sharks/physiology
17.
Mitochondrial DNA B Resour ; 4(2): 3642-3643, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-33366122

ABSTRACT

We report the first complete mitochondrial genome of a shortfin mako shark from the Atlantic Ocean. The genome had 16,700 base pairs and contained 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a non-coding D-loop. There were 81 individual differences compared to the published mitochondrial genome of a shortfin mako from the Pacific Ocean, with most variability found in protein coding genes, especially ND5, ND3, and ND1. These highly variable genes may be useful population markers in future studies, and availability of a second mitogenome will assist with future, genome-scale studies of this IUCN Endangered species.

18.
J Hered ; 109(7): 771-779, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30204894

ABSTRACT

Recent advances in genome-scale sequencing technology have allowed the development of high resolution genetic markers for the study of nonmodel taxa. In particular, transcriptome sequencing has proven to be highly useful in generating genomic markers for use in population genetic studies, allowing for insight into species connectivity, as well as local adaptive processes as many transcriptome-derived markers are found within or associated with functional genes. Herein, we developed a set of 30 microsatellite markers from a heart transcriptome for the white shark (Carcharodon carcharias), a widely distributed and globally vulnerable marine predator. Using these markers as well as 10 published anonymous genomic microsatellite loci, we provide 1) the first nuclear genetic assessment of the cross-Pacific connectivity of white sharks, and 2) a comparison of the levels of inferred differentiation across microsatellite marker sets (i.e., transcriptome vs. anonymous) to assess their respective utility to elucidate the population genetic dynamics of white sharks. Significant (FST = 0.083, P = 0.05; G″ST = 0.200; P = 0.001) genetic differentiation was found between Southwestern Pacific (n = 19) and Northeastern Pacific (n = 20) white sharks, indicating restricted, cross Pacific gene flow in this species. Transcriptome-derived microsatellite marker sets identified much higher (up to 2×) levels of genetic differentiation than anonymous genomic markers, underscoring potential utility of transcriptome markers in identifying subtle population genetic differences within highly vagile, globally distributed marine species.Subject areas: Population structure and phylogeography; Conservation genetics and biodiversity.


Subject(s)
Genetic Variation , Microsatellite Repeats/genetics , Sharks/genetics , Transcriptome , Animals , Genetic Markers , Genetics, Population , Open Reading Frames , Untranslated Regions
19.
Sci Rep ; 8(1): 1788, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29422624

ABSTRACT

The discovery of deep-sea hydrothermal vents in 1977 challenged our views of ecosystem functioning and yet, the research conducted at these extreme and logistically challenging environments still continues to reveal unique biological processes. Here, we report for the first time, a unique behavior where the deep-sea skate, Bathyraja spinosissima, appears to be actively using the elevated temperature of a hydrothermal vent environment to naturally "incubate" developing egg-cases. We hypothesize that this behavior is directly targeted to accelerate embryo development time given that deep-sea skates have some of the longest egg incubation times reported for the animal kingdom. Similar egg incubating behavior, where eggs are incubated in volcanically heated nesting grounds, have been recorded in Cretaceous sauropod dinosaurs and the rare avian megapode. To our knowledge, this is the first time incubating behavior using a volcanic source is recorded for the marine environment.


Subject(s)
Eggs , Hot Temperature , Hydrothermal Vents , Incubators , Skates, Fish/physiology , Animals , Ecosystem , Pacific Ocean , Reproduction
20.
Sci Rep ; 7(1): 9505, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842669

ABSTRACT

Continuously increasing demand for plant and animal products causes unsustainable depletion of biological resources. It is estimated that one-quarter of sharks and rays are threatened worldwide and although the global fin trade is widely recognized as a major driver, demand for meat, liver oil, and gill plates also represents a significant threat. This study used DNA barcoding and 16 S rRNA sequencing as a method to identify shark and ray species from dried fins and gill plates, obtained in Canada, China, and Sri Lanka. 129 fins and gill plates were analysed and searches on BOLD produced matches to 20 species of sharks and five species of rays or - in two cases - to a species pair. Twelve of the species found are listed or have been approved for listing in 2017 in the appendices of the Convention on International Trade in Endangered Species of Fauna and Flora (CITES), including the whale shark (Rhincodon typus), which was surprisingly found among both shark fin and gill plate samples. More than half of identified species fall under the IUCN Red List categories 'Endangered' and 'Vulnerable', raising further concerns about the impacts of this trade on the sustainability of these low productivity species.


Subject(s)
Animal Fins , Biological Evolution , Gills , Sharks/genetics , Animals , DNA Barcoding, Taxonomic , Electron Transport Complex IV/genetics , Endangered Species , RNA, Ribosomal, 16S , Sharks/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...