Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Cochrane Database Syst Rev ; 5: CD012214, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38695827

ABSTRACT

BACKGROUND: Endometrial cancer is one of the most common gynaecological cancers in the world. Rates of endometrial cancer are rising, in part because of rising obesity rates. Endometrial hyperplasia is a precancerous condition in women that can lead to endometrial cancer if left untreated. Endometrial hyperplasia occurs more commonly than endometrial cancer. Progesterone tablets that are currently used to treat women with endometrial hyperplasia are associated with adverse effects in up to 84% of women. A levonorgestrel intrauterine device may improve compliance, but it is invasive, is not acceptable to all women, and is associated with irregular vaginal bleeding in 82% of cases. Therefore, an alternative treatment for women with endometrial hyperplasia is needed. Metformin, a drug that is often used to treat people with diabetes, has been shown, in some human studies, to reverse endometrial hyperplasia. However, the effectiveness and safety of metformin for treatment of endometrial hyperplasia remain uncertain. This is an update of a review first published in 2017. OBJECTIVES: To determine the effectiveness and safety of metformin in treating women with endometrial hyperplasia. SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility Specialised Register, CENTRAL, MEDLINE, PubMed, Embase, Google Scholar, OpenGrey, LILACS, and two trials registers from inception to 5 September 2022. We searched the bibliographies of all relevant studies, and contacted experts in the field for any additional trials. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and cross-over trials comparing metformin (used alone or in combination with other medical therapies) versus placebo, no treatment, any conventional medical treatment, or any other active intervention for women with histologically confirmed endometrial hyperplasia of any type. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for eligibility, extracted data from included studies, assessed the risk of bias in the included studies, and assessed the certainty of the evidence for each outcome. We resolved disagreements by discussion or by deferring to a third review author. When study details were missing, review authors contacted the study authors. The primary outcome of this review was regression of endometrial hyperplasia histology (with or without atypia) towards normal histology. MAIN RESULTS: We included seven RCTs, in which a total of 387 women took part. In the comparison, Metformin plus megestrol versus megestrol alone, we rated the certainty of the evidence as low for the outcome, regression of endometrial hyperplasia. We rated the quality of the evidence as very low for the rest of the outcomes, in all three comparisons. Although there was a low risk of selection bias, there was a high risk of bias in the blinding of personnel and outcome assessment (performance bias and detection bias) in many studies. This update identified four new RCTs and six ongoing RCTs. Metformin versus megestrol We are uncertain whether metformin increases the regression of endometrial hyperplasia towards normal histology over megestrol (odds ratio (OR) 4.89, 95% confidence interval (CI) 1.56 to 15.32; P = 0.006; 2 RCTs, 83 participants; I² = 7%; very low-certainty evidence). This evidence suggests that if the rate of regression with megestrol is 61%, the rate of regression with metformin would be between 71% and 96%. It is unresolved whether metformin results in different rates of abnormal uterine bleeding or hysterectomy compared to megestrol. No study in this comparison reported progression of hyperplasia to endometrial cancer, recurrence of endometrial hyperplasia, health-related quality of life, or adverse effects during treatment. Metformin plus megestrol versus megestrol monotherapy The combination of metformin and megestrol may enhance the regression of endometrial hyperplasia towards normal histology more than megestrol alone (OR 3.27, 95% CI 1.65 to 6.51; P = 0.0007; 4 RCTs, 258 participants; I² = 0%, low-certainty evidence). This suggests that if the rate of regression with megestrol monotherapy is 54%, the rate of regression with the addition of metformin would be between 66% and 84%. In one study, 3/8 (37.5%) of participants who took metformin had nausea that settled without further treatment. It is unresolved whether the combination of metformin and megestrol results in different rates of recurrence of endometrial hyperplasia, progression of endometrial hyperplasia to endometrial cancer, or hysterectomy compared to megestrol monotherapy. No study in this comparison reported abnormal uterine bleeding, or health-related quality of life. Metformin plus levonorgestrel (intrauterine system) versus levonorgestrel (intrauterine system) monotherapy We are uncertain whether there is a difference between groups in the regression of endometrial hyperplasia towards normal histology (OR 0.29, 95% CI 0.01 to 7.56; 1 RCT, 46 participants; very low-certainty evidence). This evidence suggests that if the rate of regression with levonorgestrel monotherapy is 96%, the rate of regression with the addition of metformin would be between 73% and 100%. It is unresolved whether the combination of metformin and levonorgestrel results in different rates of abnormal uterine bleeding, hysterectomy, or the development of adverse effects during treatment compared to levonorgestrel monotherapy. No study in this comparison reported recurrence of endometrial hyperplasia, progression of hyperplasia to endometrial cancer, or health-related quality of life. AUTHORS' CONCLUSIONS: Review authors found insufficient evidence to either support or refute the use of metformin, specifically megestrol acetate, given alone or in combination with standard therapy, for the treatment of women with endometrial hyperplasia. Robustly designed and adequately powered randomised controlled trials, yielding long-term outcome data are still needed to address this clinical question.


Subject(s)
Endometrial Hyperplasia , Metformin , Randomized Controlled Trials as Topic , Humans , Metformin/therapeutic use , Female , Endometrial Hyperplasia/drug therapy , Hypoglycemic Agents/therapeutic use
2.
J Cardiovasc Magn Reson ; 26(1): 101040, 2024.
Article in English | MEDLINE | ID: mdl-38522522

ABSTRACT

BACKGROUND: Late gadolinium enhancement (LGE) of the myocardium has significant diagnostic and prognostic implications, with even small areas of enhancement being important. Distinguishing between definitely normal and definitely abnormal LGE images is usually straightforward, but diagnostic uncertainty arises when reporters are not sure whether the observed LGE is genuine or not. This uncertainty might be resolved by repetition (to remove artifact) or further acquisition of intersecting images, but this must take place before the scan finishes. Real-time quality assurance by humans is a complex task requiring training and experience, so being able to identify which images have an intermediate likelihood of LGE while the scan is ongoing, without the presence of an expert is of high value. This decision-support could prompt immediate image optimization or acquisition of supplementary images to confirm or refute the presence of genuine LGE. This could reduce ambiguity in reports. METHODS: Short-axis, phase-sensitive inversion recovery late gadolinium images were extracted from our clinical cardiac magnetic resonance (CMR) database and shuffled. Two, independent, blinded experts scored each individual slice for "LGE likelihood" on a visual analog scale, from 0 (absolute certainty of no LGE) to 100 (absolute certainty of LGE), with 50 representing clinical equipoise. The scored images were split into two classes-either "high certainty" of whether LGE was present or not, or "low certainty." The dataset was split into training, validation, and test sets (70:15:15). A deep learning binary classifier based on the EfficientNetV2 convolutional neural network architecture was trained to distinguish between these categories. Classifier performance on the test set was evaluated by calculating the accuracy, precision, recall, F1-score, and area under the receiver operating characteristics curve (ROC AUC). Performance was also evaluated on an external test set of images from a different center. RESULTS: One thousand six hundred and forty-five images (from 272 patients) were labeled and split at the patient level into training (1151 images), validation (247 images), and test (247 images) sets for the deep learning binary classifier. Of these, 1208 images were "high certainty" (255 for LGE, 953 for no LGE), and 437 were "low certainty". An external test comprising 247 images from 41 patients from another center was also employed. After 100 epochs, the performance on the internal test set was accuracy = 0.94, recall = 0.80, precision = 0.97, F1-score = 0.87, and ROC AUC = 0.94. The classifier also performed robustly on the external test set (accuracy = 0.91, recall = 0.73, precision = 0.93, F1-score = 0.82, and ROC AUC = 0.91). These results were benchmarked against a reference inter-expert accuracy of 0.86. CONCLUSION: Deep learning shows potential to automate quality control of late gadolinium imaging in CMR. The ability to identify short-axis images with intermediate LGE likelihood in real-time may serve as a useful decision-support tool. This approach has the potential to guide immediate further imaging while the patient is still in the scanner, thereby reducing the frequency of recalls and inconclusive reports due to diagnostic indecision.


Subject(s)
Contrast Media , Deep Learning , Image Interpretation, Computer-Assisted , Predictive Value of Tests , Humans , Contrast Media/administration & dosage , Reproducibility of Results , Image Interpretation, Computer-Assisted/standards , Databases, Factual , Myocardium/pathology , Male , Female , Magnetic Resonance Imaging, Cine/standards , Middle Aged , Heart Diseases/diagnostic imaging , Quality Assurance, Health Care/standards , Observer Variation , Aged , Magnetic Resonance Imaging/standards
3.
BMC Cardiovasc Disord ; 24(1): 172, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509472

ABSTRACT

BACKGROUND: Although APOE ε4 allele carriage confers a risk for coronary artery disease, its persistence in humans might be explained by certain survival advantages (antagonistic pleiotropy). METHODS: Combining data from ~ 37,000 persons from three older age British cohorts (1946 National Survey of Health and Development [NSHD], Southall and Brent Revised [SABRE], and UK Biobank) and one younger age cohort (Avon Longitudinal Study of Parents and Children [ALSPAC]), we explored whether APOE ε4 carriage associates with beneficial or unfavorable left ventricular (LV) structural and functional metrics by echocardiography and cardiovascular magnetic resonance (CMR). RESULTS: Compared to the non-APOE ε4 group, APOE ε4 carriers had similar cardiac phenotypes in terms of LV ejection fraction, E/e', posterior wall and interventricular septal thickness, and LV mass. However, they had improved myocardial performance resulting in greater LV stroke volume generation per 1 mL of myocardium (higher myocardial contraction fraction). In NSHD (n = 1467) and SABRE (n = 1187), ε4 carriers had a 4% higher MCF (95% CI 1-7%, p = 0.016) using echocardiography. Using CMR data, in UK Biobank (n = 32,972), ε4 carriers had a 1% higher MCF 95% (CI 0-1%, p = 0.020) with a dose-response relationship based on the number of ε4 alleles. In addition, UK Biobank ε4 carriers also had more favorable radial and longitudinal strain rates compared to non APOE ε4 carriers. In ALSPAC (n = 1397), APOE ε4 carriers aged < 24 years had a 2% higher MCF (95% CI 0-5%, p = 0.059). CONCLUSIONS: By triangulating results in four independent cohorts, across imaging modalities (echocardiography and CMR), and in ~ 37,000 individuals, our results point towards an association between ε4 carriage and improved cardiac performance in terms of LV MCF. This potentially favorable cardiac phenotype adds to the growing number of reported survival advantages attributed to the pleiotropic effects APOE ε4 carriage that might collectively explain its persistence in human populations.


Subject(s)
Apolipoprotein E4 , Coronary Artery Disease , Adolescent , Aged , Child , Humans , Alleles , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Coronary Artery Disease/genetics , Genotype , Longitudinal Studies , Myocardium , Phenotype
4.
J Am Coll Cardiol ; 83(11): 1042-1055, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38385929

ABSTRACT

BACKGROUND: Ventricular arrhythmia in hypertrophic cardiomyopathy (HCM) relates to adverse structural change and genetic status. Cardiovascular magnetic resonance (CMR)-guided electrocardiographic imaging (ECGI) noninvasively maps cardiac structural and electrophysiological (EP) properties. OBJECTIVES: The purpose of this study was to establish whether in subclinical HCM (genotype [G]+ left ventricular hypertrophy [LVH]-), ECGI detects early EP abnormality, and in overt HCM, whether the EP substrate relates to genetic status (G+/G-LVH+) and structural phenotype. METHODS: This was a prospective 211-participant CMR-ECGI multicenter study of 70 G+LVH-, 104 LVH+ (51 G+/53 G-), and 37 healthy volunteers (HVs). Local activation time (AT), corrected repolarization time, corrected activation-recovery interval, spatial gradients (GAT/GRTc), and signal fractionation were derived from 1,000 epicardial sites per participant. Maximal wall thickness and scar burden were derived from CMR. A support vector machine was built to discriminate G+LVH- from HV and low-risk HCM from those with intermediate/high-risk score or nonsustained ventricular tachycardia. RESULTS: Compared with HV, subclinical HCM showed mean AT prolongation (P = 0.008) even with normal 12-lead electrocardiograms (ECGs) (P = 0.009), and repolarization was more spatially heterogenous (GRTc: P = 0.005) (23% had normal ECGs). Corrected activation-recovery interval was prolonged in overt vs subclinical HCM (P < 0.001). Mean AT was associated with maximal wall thickness; spatial conduction heterogeneity (GAT) and fractionation were associated with scar (all P < 0.05), and G+LVH+ had more fractionation than G-LVH+ (P = 0.002). The support vector machine discriminated subclinical HCM from HV (10-fold cross-validation accuracy 80% [95% CI: 73%-85%]) and identified patients at higher risk of sudden cardiac death (accuracy 82% [95% CI: 78%-86%]). CONCLUSIONS: In the absence of LVH or 12-lead ECG abnormalities, HCM sarcomere gene mutation carriers express an aberrant EP phenotype detected by ECGI. In overt HCM, abnormalities occur more severely with adverse structural change and positive genetic status.


Subject(s)
Cardiomyopathy, Hypertrophic , Cicatrix , Humans , Prospective Studies , Cicatrix/pathology , Magnetic Resonance Imaging, Cine , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/genetics , Electrocardiography , Hypertrophy, Left Ventricular/diagnosis , Magnetic Resonance Imaging
5.
Acta Myol ; 42(2-3): 43-52, 2023.
Article in English | MEDLINE | ID: mdl-38090549

ABSTRACT

Lamins A/C (encoded by LMNA gene) can lead to dilated cardiomyopathy (DCM). This pilot study sought to explore the postgenomic phenotype of end-stage lamin heart disease. Consecutive patients with end-stage lamin heart disease (LMNA-group, n = 7) and ischaemic DCM (ICM-group, n = 7) undergoing heart transplantation were prospectively enrolled. Samples were obtained from left atrium (LA), left ventricle (LV), right atrium (RA), right ventricle (RV) and interventricular septum (IVS), avoiding the infarcted myocardial segments in the ICM-group. Samples were analysed using a discovery 'shotgun' proteomics approach. We found that 990 proteins were differentially abundant between LMNA and ICM samples with the LA being most perturbed (16-fold more than the LV). Abundance of lamin A/C protein was reduced, but lamin B increased in LMNA LA/RA tissue compared to ICM, but not in LV/RV. Carbonic anhydrase 3 (CA3) was over-abundant across all LMNA tissue samples (LA, LV, RA, RV, and IVS) when compared to ICM. Transthyretin was more abundant in the LV/RV of LMNA compared to ICM, while sarcomeric proteins such as titin and cardiac alpha-cardiac myosin heavy chain were generally less abundant in RA/LA of LMNA. Protein expression profiling and enrichment analysis pointed towards sarcopenia, extracellular matrix remodeling, deficient myocardial energetics, redox imbalances, and abnormal calcium handling in LMNA samples. Compared to ICM, end-stage lamin heart disease is a biventricular but especially a biatrial disease appearing to have an abundance of lamin B, CA3 and transthyretin, potentially hinting to compensatory responses.


Subject(s)
Cardiomyopathy, Dilated , Heart Ventricles , Humans , Proteome/genetics , Prealbumin/genetics , Lamin Type B/genetics , Pilot Projects , Cardiomyopathy, Dilated/genetics , Lamin Type A/genetics , Heart Atria/metabolism , Mutation
6.
J Cardiovasc Magn Reson ; 25(1): 73, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38044439

ABSTRACT

BACKGROUND: Electrocardiographic imaging (ECGI) generates electrophysiological (EP) biomarkers while cardiovascular magnetic resonance (CMR) imaging provides data about myocardial structure, function and tissue substrate. Combining this information in one examination is desirable but requires an affordable, reusable, and high-throughput solution. We therefore developed the CMR-ECGI vest and carried out this technical development study to assess its feasibility and repeatability in vivo. METHODS: CMR was prospectively performed at 3T on participants after collecting surface potentials using the locally designed and fabricated 256-lead ECGI vest. Epicardial maps were reconstructed to generate local EP parameters such as activation time (AT), repolarization time (RT) and activation recovery intervals (ARI). 20 intra- and inter-observer and 8 scan re-scan repeatability tests. RESULTS: 77 participants were recruited: 27 young healthy volunteers (HV, 38.9 ± 8.5 years, 35% male) and 50 older persons (77.0 ± 0.1 years, 52% male). CMR-ECGI was achieved in all participants using the same reusable, washable vest without complications. Intra- and inter-observer variability was low (correlation coefficients [rs] across unipolar electrograms = 0.99 and 0.98 respectively) and scan re-scan repeatability was high (rs between 0.81 and 0.93). Compared to young HV, older persons had significantly longer RT (296.8 vs 289.3 ms, p = 0.002), ARI (249.8 vs 235.1 ms, p = 0.002) and local gradients of AT, RT and ARI (0.40 vs 0.34 ms/mm, p = 0,01; 0.92 vs 0.77 ms/mm, p = 0.03; and 1.12 vs 0.92 ms/mm, p = 0.01 respectively). CONCLUSION: Our high-throughput CMR-ECGI solution is feasible and shows good reproducibility in younger and older participants. This new technology is now scalable for high throughput research to provide novel insights into arrhythmogenesis and potentially pave the way for more personalised risk stratification. CLINICAL TRIAL REGISTRATION: Title: Multimorbidity Life-Course Approach to Myocardial Health-A Cardiac Sub-Study of the MRC National Survey of Health and Development (NSHD) (MyoFit46). National Clinical Trials (NCT) number: NCT05455125. URL: https://clinicaltrials.gov/ct2/show/NCT05455125?term=MyoFit&draw=2&rank=1.


Subject(s)
Heart , Magnetic Resonance Imaging , Aged , Female , Humans , Male , Feasibility Studies , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests , Reproducibility of Results , Adult , Middle Aged
7.
Article in English | MEDLINE | ID: mdl-37831014

ABSTRACT

BACKGROUND: There is no acceptable maximum wall thickness (MWT) threshold for diagnosing apical hypertrophic cardiomyopathy (ApHCM), with guidelines referring to ≥15 mm MWT for all hypertrophic cardiomyopathy subtypes. A normal myocardium naturally tapers apically; a fixed diagnostic threshold fails to account for this. Using cardiac magnetic resonance, "relative" ApHCM has been described with typical electrocardiographic features, loss of apical tapering, and cavity obliteration but also with MWT <15 mm. OBJECTIVES: The authors aimed to define normal apical wall thickness thresholds in healthy subjects and use these to accurately identify ApHCM. METHODS: The following healthy subjects were recruited: healthy UK Biobank imaging substudy subjects (n = 4,112) and an independent healthy volunteer group (n = 489). A clinically defined disease population of 104 ApHCM subjects was enrolled, with 72 overt (MWT ≥15 mm) and 32 relative (MWT <15 mm but typical electrocardiographic/imaging findings) ApHCM subjects. Cardiac magnetic resonance-derived MWT was measured in 16 segments using a published clinically validated machine learning algorithm. Segmental normal reference ranges were created and indexed (for age, sex, and body surface area), and diagnostic performance was assessed. RESULTS: In healthy cohorts, there was no clinically significant age-related difference for apical wall thickness. There were sex-related differences, but these were not clinically significant after indexing to body surface area. Therefore, segmental reference ranges for apical hypertrophy required indexing to body surface area only (not age or sex). The upper limit of normal (the largest of the 4 apical segments measured) corresponded to a maximum apical MWT in healthy subjects of 5.2 to 5.6 mm/m2 with an accuracy of 0.94 (the unindexed equivalent being 11 mm). This threshold was categorized as abnormal in 99% (71/72) of overt ApHCM patients, 78% (25/32) of relative ApHCM patients, 3% (122/4,112) of UK Biobank subjects, and 3% (13/489) of healthy volunteers. CONCLUSIONS: Per-segment indexed apical wall thickness thresholds are highly accurate for detecting apical hypertrophy, providing confidence to the reader to diagnose ApHCM in those not reaching current internationally recognized criteria.

8.
Clin Epigenetics ; 15(1): 164, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853450

ABSTRACT

BACKGROUND: DNA methylation (DNAm) age acceleration (AgeAccel) and cardiac age by 12-lead advanced electrocardiography (A-ECG) are promising biomarkers of biological and cardiac aging, respectively. We aimed to explore the relationships between DNAm age and A-ECG heart age and to understand the extent to which DNAm AgeAccel relates to cardiovascular (CV) risk factors in a British birth cohort from 1946. RESULTS: We studied four DNAm ages (AgeHannum, AgeHorvath, PhenoAge, and GrimAge) and their corresponding AgeAccel. Outcomes were the results from two publicly available ECG-based cardiac age scores: the Bayesian A-ECG-based heart age score of Lindow et al. 2022 and the deep neural network (DNN) ECG-based heart age score of Ribeiro et al. 2020. DNAm AgeAccel was also studied relative to results from two logistic regression-based A-ECG disease scores, one for left ventricular (LV) systolic dysfunction (LVSD), and one for LV electrical remodeling (LVER). Generalized linear models were used to explore the extent to which any associations between biological cardiometabolic risk factors (body mass index, hypertension, diabetes, high cholesterol, previous cardiovascular disease [CVD], and any CV risk factor) and the ECG-based outcomes are mediated by DNAm AgeAccel. We derived the total effects, average causal mediation effects (ACMEs), average direct effects (ADEs), and the proportion mediated [PM] with their 95% confidence intervals [CIs]. 498 participants (all 60-64 years) were included, with the youngest ECG heart age being 27 and the oldest 90. When exploring the associations between cardiometabolic risk factors and Bayesian A-ECG cardiac age, AgeAccelPheno appears to be a partial mediator, as ACME was 0.23 years [0.01, 0.52] p = 0.028 (i.e., PM≈18%) for diabetes, 0.34 [0.03, 0.74] p = 0.024 (i.e., PM≈15%) for high cholesterol, and 0.34 [0.03, 0.74] p = 0.024 (PM≈15%) for any CV risk factor. Similarly, AgeAccelGrim mediates ≈30% of the relationship between diabetes or high cholesterol and the DNN ECG-based heart age. When exploring the link between cardiometabolic risk factors and the A-ECG-based LVSD and LVER scores, it appears that AgeAccelPheno or AgeAccelGrim mediate 10-40% of these associations. CONCLUSION: By the age of 60, participants with accelerated DNA methylation appear to have older, weaker, and more electrically impaired hearts. We show that the harmful effects of CV risk factors on cardiac age and health, appear to be partially mediated by DNAm AgeAccelPheno and AgeAccelGrim. This highlights the need to further investigate the potential cardioprotective effects of selective DNA methyltransferases modulators.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Humans , Infant , DNA Methylation , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Bayes Theorem , Risk Factors , Aging/genetics , Heart Disease Risk Factors , Diabetes Mellitus/genetics , Cholesterol , Epigenesis, Genetic
9.
Circ Cardiovasc Imaging ; 16(3): e014907, 2023 03.
Article in English | MEDLINE | ID: mdl-36943913

ABSTRACT

BACKGROUND: Apical hypertrophic cardiomyopathy (ApHCM) accounts for ≈10% of hypertrophic cardiomyopathy cases and is characterized by apical hypertrophy, apical cavity obliteration, and tall ECG R waves with ischemic-looking deep T-wave inversion. These may be present even with <15 mm apical hypertrophy (relative ApHCM). Microvascular dysfunction is well described in hypertrophic cardiomyopathy. We hypothesized that apical perfusion defects would be common in ApHCM. METHODS: A 2-center study using cardiovascular magnetic resonance short- and long-axis quantitative adenosine vasodilator stress perfusion mapping. One hundred patients with ApHCM (68 overt hypertrophy [≥15 mm] and 32 relative ApHCM) were compared with 50 patients with asymmetrical septal hypertrophy hypertrophic cardiomyopathy and 40 healthy volunteer controls. Perfusion was assessed visually and quantitatively as myocardial blood flow and myocardial perfusion reserve. RESULTS: Apical perfusion defects were present in all overt ApHCM patients (100%), all relative ApHCM patients (100%), 36% of asymmetrical septal hypertrophy hypertrophic cardiomyopathy, and 0% of healthy volunteers (P<0.001). In 10% of patients with ApHCM, perfusion defects were sufficiently apical that conventional short-axis views missed them. In 29%, stress myocardial blood flow fell below rest values. Stress myocardial blood flow was most impaired subendocardially, with greater hypertrophy or scar, and with apical aneurysms. Impaired apical myocardial blood flow was most strongly predicted by thicker apical segments (ß-coefficient, -0.031 mL/g per min [CI, -0.06 to -0.01]; P=0.013), higher ejection fraction (-0.025 mL/g per min [CI, -0.04 to -0.01]; P<0.005), and ECG maximum R-wave height (-0.023 mL/g per min [CI, -0.04 to -0.01]; P<0.005). CONCLUSIONS: Apical perfusion defects are universally present in ApHCM at all stages. Its ubiquitous presence along with characteristic ECG suggests ischemia may play a disease-defining role in ApHCM.


Subject(s)
Apical Hypertrophic Cardiomyopathy , Cardiomyopathy, Hypertrophic , Humans , Echocardiography , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/diagnostic imaging , Ischemia , Hypertrophy
10.
Circulation ; 147(5): 364-374, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36705028

ABSTRACT

BACKGROUND: Acute myocardial injury in hospitalized patients with coronavirus disease 2019 (COVID-19) has a poor prognosis. Its associations and pathogenesis are unclear. Our aim was to assess the presence, nature, and extent of myocardial damage in hospitalized patients with troponin elevation. METHODS: Across 25 hospitals in the United Kingdom, 342 patients with COVID-19 and an elevated troponin level (COVID+/troponin+) were enrolled between June 2020 and March 2021 and had a magnetic resonance imaging scan within 28 days of discharge. Two prospective control groups were recruited, comprising 64 patients with COVID-19 and normal troponin levels (COVID+/troponin-) and 113 patients without COVID-19 or elevated troponin level matched by age and cardiovascular comorbidities (COVID-/comorbidity+). Regression modeling was performed to identify predictors of major adverse cardiovascular events at 12 months. RESULTS: Of the 519 included patients, 356 (69%) were men, with a median (interquartile range) age of 61.0 years (53.8, 68.8). The frequency of any heart abnormality, defined as left or right ventricular impairment, scar, or pericardial disease, was 2-fold greater in cases (61% [207/342]) compared with controls (36% [COVID+/troponin-] versus 31% [COVID-/comorbidity+]; P<0.001 for both). More cases than controls had ventricular impairment (17.2% versus 3.1% and 7.1%) or scar (42% versus 7% and 23%; P<0.001 for both). The myocardial injury pattern was different, with cases more likely than controls to have infarction (13% versus 2% and 7%; P<0.01) or microinfarction (9% versus 0% and 1%; P<0.001), but there was no difference in nonischemic scar (13% versus 5% and 14%; P=0.10). Using the Lake Louise magnetic resonance imaging criteria, the prevalence of probable recent myocarditis was 6.7% (23/342) in cases compared with 1.7% (2/113) in controls without COVID-19 (P=0.045). During follow-up, 4 patients died and 34 experienced a subsequent major adverse cardiovascular event (10.2%), which was similar to controls (6.1%; P=0.70). Myocardial scar, but not previous COVID-19 infection or troponin, was an independent predictor of major adverse cardiovascular events (odds ratio, 2.25 [95% CI, 1.12-4.57]; P=0.02). CONCLUSIONS: Compared with contemporary controls, patients with COVID-19 and elevated cardiac troponin level have more ventricular impairment and myocardial scar in early convalescence. However, the proportion with myocarditis was low and scar pathogenesis was diverse, including a newly described pattern of microinfarction. REGISTRATION: URL: https://www.isrctn.com; Unique identifier: 58667920.


Subject(s)
COVID-19 , Heart Injuries , Myocarditis , Female , Humans , Male , Middle Aged , Cicatrix , COVID-19/complications , COVID-19/epidemiology , Hospitalization , Prospective Studies , Risk Factors , Troponin , Aged
11.
J Cardiovasc Pharmacol ; 80(4): 547-561, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35522143

ABSTRACT

ABSTRACT: Modern cancer therapies have significantly improved survival leading to a growing population of cancer survivors. Similarly, both conventional and newer treatments are associated with a spectrum of cardiovascular disorders with potential long-term sequelae. Prompt detection and treatment of these complications is, therefore, pivotal to enable healthy survivorship and reduce cardiovascular morbidity. Advanced multimodality imaging is a valuable tool for stratifying patient risk, identifying cardiovascular toxicity during and after therapy, and predicting recovery. This review summarizes the potential cardiotoxic complications of anticancer therapies and the multimodality approaches available in each case with special focus on newer techniques and the added value of biomarkers ultimately leading to earlier diagnosis and better prognostication.


Subject(s)
Antineoplastic Agents , Cardiovascular Diseases , Cardiovascular System , Neoplasms , Antineoplastic Agents/adverse effects , Biomarkers , Cardiotoxicity/etiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/diagnostic imaging , Humans , Neoplasms/complications , Neoplasms/drug therapy
12.
J Cardiovasc Magn Reson ; 24(1): 16, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35272664

ABSTRACT

BACKGROUND: Measurement of cardiac structure and function from images (e.g. volumes, mass and derived parameters such as left ventricular (LV) ejection fraction [LVEF]) guides care for millions. This is best assessed using cardiovascular magnetic resonance (CMR), but image analysis is currently performed by individual clinicians, which introduces error. We sought to develop a machine learning algorithm for volumetric analysis of CMR images with demonstrably better precision than human analysis. METHODS: A fully automated machine learning algorithm was trained on 1923 scans (10 scanner models, 13 institutions, 9 clinical conditions, 60,000 contours) and used to segment the LV blood volume and myocardium. Performance was quantified by measuring precision on an independent multi-site validation dataset with multiple pathologies with n = 109 patients, scanned twice. This dataset was augmented with a further 1277 patients scanned as part of routine clinical care to allow qualitative assessment of generalization ability by identifying mis-segmentations. Machine learning algorithm ('machine') performance was compared to three clinicians ('human') and a commercial tool (cvi42, Circle Cardiovascular Imaging). FINDINGS: Machine analysis was quicker (20 s per patient) than human (13 min). Overall machine mis-segmentation rate was 1 in 479 images for the combined dataset, occurring mostly in rare pathologies not encountered in training. Without correcting these mis-segmentations, machine analysis had superior precision to three clinicians (e.g. scan-rescan coefficients of variation of human vs machine: LVEF 6.0% vs 4.2%, LV mass 4.8% vs. 3.6%; both P < 0.05), translating to a 46% reduction in required trial sample size using an LVEF endpoint. CONCLUSION: We present a fully automated algorithm for measuring LV structure and global systolic function that betters human performance for speed and precision.


Subject(s)
Machine Learning , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging, Cine/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests , Reproducibility of Results , Stroke Volume , Ventricular Function, Left
13.
J Am Coll Cardiol ; 79(12): 1141-1151, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35331408

ABSTRACT

BACKGROUND: Patients with previous coronary artery bypass graft (CABG) surgery typically have complex coronary disease and remain at high risk of adverse events. Quantitative myocardial perfusion indices predict outcomes in native vessel disease, but their prognostic performance in patients with prior CABG is unknown. OBJECTIVES: In this study, we sought to evaluate whether global stress myocardial blood flow (MBF) and perfusion reserve (MPR) derived from perfusion mapping cardiac magnetic resonance (CMR) independently predict adverse outcomes in patients with prior CABG. METHODS: This was a retrospective analysis of consecutive patients with prior CABG referred for adenosine stress perfusion CMR. Perfusion mapping was performed in-line with automated quantification of MBF. The primary outcome was a composite of all-cause mortality and major adverse cardiovascular events defined as nonfatal myocardial infarction and unplanned revascularization. Associations were evaluated with the use of Cox proportional hazards models after adjusting for comorbidities and CMR parameters. RESULTS: A total of 341 patients (median age 67 years, 86% male) were included. Over a median follow-up of 638 days (IQR: 367-976 days), 81 patients (24%) reached the primary outcome. Both stress MBF and MPR independently predicted outcomes after adjusting for known prognostic factors (regional ischemia, infarction). The adjusted hazard ratio (HR) for 1 mL/g/min of decrease in stress MBF was 2.56 (95% CI: 1.45-4.35) and for 1 unit of decrease in MPR was 1.61 (95% CI: 1.08-2.38). CONCLUSIONS: Global stress MBF and MPR derived from perfusion CMR independently predict adverse outcomes in patients with previous CABG. This effect is independent from the presence of regional ischemia on visual assessment and the extent of previous infarction.


Subject(s)
Coronary Artery Disease , Myocardial Perfusion Imaging , Aged , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/surgery , Coronary Circulation/physiology , Female , Humans , Infarction , Ischemia , Male , Perfusion , Predictive Value of Tests , Retrospective Studies
14.
JACC Cardiovasc Imaging ; 14(11): 2155-2166, 2021 11.
Article in English | MEDLINE | ID: mdl-33975819

ABSTRACT

OBJECTIVES: The purpose of this study was to detect cardiovascular changes after mild severe acute respiratory syndrome-coronavirus-2 infection. BACKGROUND: Concern exists that mild coronavirus disease 2019 may cause myocardial and vascular disease. METHODS: Participants were recruited from COVIDsortium, a 3-hospital prospective study of 731 health care workers who underwent first-wave weekly symptom, polymerase chain reaction, and serology assessment over 4 months, with seroconversion in 21.5% (n = 157). At 6 months post-infection, 74 seropositive and 75 age-, sex-, and ethnicity-matched seronegative control subjects were recruited for cardiovascular phenotyping (comprehensive phantom-calibrated cardiovascular magnetic resonance and blood biomarkers). Analysis was blinded, using objective artificial intelligence analytics where available. RESULTS: A total of 149 subjects (mean age 37 years, range 18 to 63 years, 58% women) were recruited. Seropositive infections had been mild with case definition, noncase definition, and asymptomatic disease in 45 (61%), 18 (24%), and 11 (15%), respectively, with 1 person hospitalized (for 2 days). Between seropositive and seronegative groups, there were no differences in cardiac structure (left ventricular volumes, mass, atrial area), function (ejection fraction, global longitudinal shortening, aortic distensibility), tissue characterization (T1, T2, extracellular volume fraction mapping, late gadolinium enhancement) or biomarkers (troponin, N-terminal pro-B-type natriuretic peptide). With abnormal defined by the 75 seronegatives (2 SDs from mean, e.g., ejection fraction <54%, septal T1 >1,072 ms, septal T2 >52.4 ms), individuals had abnormalities including reduced ejection fraction (n = 2, minimum 50%), T1 elevation (n = 6), T2 elevation (n = 9), late gadolinium enhancement (n = 13, median 1%, max 5% of myocardium), biomarker elevation (borderline troponin elevation in 4; all N-terminal pro-B-type natriuretic peptide normal). These were distributed equally between seropositive and seronegative individuals. CONCLUSIONS: Cardiovascular abnormalities are no more common in seropositive versus seronegative otherwise healthy, workforce representative individuals 6 months post-mild severe acute respiratory syndrome-coronavirus-2 infection.


Subject(s)
COVID-19 , Cardiovascular Abnormalities , Adolescent , Adult , Artificial Intelligence , Case-Control Studies , Contrast Media , Female , Gadolinium , Health Personnel , Humans , Magnetic Resonance Imaging, Cine , Male , Middle Aged , Myocardium , Predictive Value of Tests , Prospective Studies , SARS-CoV-2 , Ventricular Function, Left , Young Adult
15.
Lancet Digit Health ; 3(1): e20-e28, 2021 01.
Article in English | MEDLINE | ID: mdl-33735065

ABSTRACT

BACKGROUND: Left ventricular maximum wall thickness (MWT) is central to diagnosis and risk stratification of hypertrophic cardiomyopathy, but human measurement is prone to variability. We developed an automated machine learning algorithm for MWT measurement and compared precision (reproducibility) with that of 11 international experts, using a dataset of patients with hypertrophic cardiomyopathy. METHODS: 60 adult patients with hypertrophic cardiomyopathy, including those carrying hypertrophic cardiomyopathy gene mutations, were recruited at three institutes in the UK from August, 2018, to September, 2019: Barts Heart Centre, University College London Hospital (The Heart Hospital), and Leeds Teaching Hospitals NHS Trust. Participants had two cardiovascular magnetic resonance scans (test and retest) on the same day, ensuring no biological variability, using four cardiac MRI scanner models represented across two manufacturers and two field strengths. End-diastolic short-axis MWT was measured in test and retest by 11 international experts (from nine centres in six countries) and an automated machine learning method, which was trained to segment endocardial and epicardial contours on an independent, multicentre, multidisease dataset of 1923 patients. Machine learning MWT measurement was done with a method based on solving Laplace's equation. To assess test-retest reproducibility, we estimated the absolute test-retest MWT difference (precision), the coefficient of variation (CoV) for duplicate measurements, and the number of patients reclassified between test and retest according to different thresholds (MWT >15 mm and >30 mm). We calculated the sample size required to detect a prespecified MWT change between pairs of scans for machine learning and each expert. FINDINGS: 1440 MWT measurements were analysed, corresponding to two scans from 60 participants by 12 observers (11 experts and machine learning). Experts differed in the MWT they measured, ranging from 14·9 mm (SD 4·2) to 19·0 mm (4·7; p<0·0001 for trend). Machine learning-measured mean MWT was 16·8 mm (4·1). Machine learning precision was superior, with a test-retest difference of 0·7 mm (0·6) compared with experts, who ranged from 1·1 mm (0·9) to 3·7 mm (2·0; p values for machine learning vs expert comparison ranging from <0·0001 to 0·0073) and a significantly lower CoV than for all experts (4·3% [95% CI 3·3-5·1] vs 5·7-12·1% across experts). On average, 38 (64%) patients were designated as having MWT greater than 15 mm by machine learning compared with 27 (45%) to 50 (83%) patients by experts; five (8%) patients were reclassified in test-retest by machine learning compared with four (7%) to 12 (20%) by experts. With a cutoff point of more than 30 mm for implantable cardioverter-defibrillator, three experts would have changed recommendations between tests a total of four times, but machine learning was consistent. Using machine learning, a clinical trial to detect a 2 mm MWT change would need 2·3 times (range 1·6-4·6) fewer patients. INTERPRETATION: In this preliminary study, machine learning MWT measurement in hypertrophic cardiomyopathy is superior to human experts with potential implications for diagnosis, risk stratification, and clinical trials. FUNDING: European Regional Development Fund and Barts Charity.


Subject(s)
Algorithms , Cardiomyopathy, Hypertrophic/diagnosis , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Machine Learning , Adult , Aged , Cardiomyopathy, Hypertrophic/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Observer Variation , Reproducibility of Results , Risk Assessment/methods , United Kingdom/epidemiology
16.
CVIR Endovasc ; 4(1): 6, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33399961

ABSTRACT

PURPOSE: A systematic review to determine the effectiveness of intra-arterial anaesthetics on post- operative pain and opioid analgesia requirements in arterial embolisation procedures. MATERIALS AND METHODS: A systematic review of the literature was performed (Embase, PubMed, MEDLINE and the Cochrane Library) from inception to 10th August 2020. Randomised controlled trials (RCTs) and cohort studies that utilised intra-arterial anaesthesia during an embolisation procedure for the purposes of pain control were included. Eligibility was assessed by two investigators independently. RESULTS: Eight hundred fifty-nine candidate articles were identified, and 9 studies met the inclusion criteria (6 RCTs and 3 retrospective cohort studies). Four studies were of hepatic chemoembolisation and 5 were of uterine artery embolisation. Five hundred twenty-nine patients were treated in total. All studies used lidocaine as the anaesthetic with doses ranging from 20 to 200 mg, and the anaesthetic was delivered varyingly before, during or after embolisation. Pain intensity was converted to a numeric scale from 0 to 10, and opioid doses were converted to milligram morphine equivalent doses. A random-effects meta-analysis model was used to analyse the results of RCTs, and the results of cohort studies were summarised with a narrative synthesis. The meta-analyses suggested that pain scores were reduced by a mean of 1.02 (95% CI - 2.34 to 0.30; p = 0.13) and opioid doses were reduced by a mean of 7.35 mg (95% CI, - 14.77, 0.06; p = 0.05) in the intervention group however neither finding was statistically significant. No serious adverse events were reported. CONCLUSION: Intra-arterial anaesthetic may slightly reduce pain intensity and post-operative opioid consumption following embolisation, however the results are not statistically significant. There is very limited data available on the effect of anaesthetic on length of hospital admission. Whilst no serious adverse events were reported, there are some concerns regarding the effect of lidocaine on the technical success of embolisation procedures that preclude our recommendation for routine use in embolisation procedures. High quality randomised controlled trials are required to elucidate the dose-response effect of lidocaine on opioid consumption and pain following embolisation, particularly in the first few hours post-operatively, as well as effects on duration of hospital stay.

17.
Cochrane Database Syst Rev ; 10: CD012214, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29077194

ABSTRACT

BACKGROUND: Endometrial cancer is one of the most common gynaecological cancers in the world. Rates of endometrial cancer are rising, in part because of rising obesity rates. Endometrial hyperplasia is a precancerous condition in women that can lead to endometrial cancer if left untreated. Endometrial hyperplasia occurs more commonly than endometrial cancer. Progesterone tablets currently used to treat women with endometrial hyperplasia are associated with adverse effects in up to 84% of women. The levonorgestrel intrauterine device (Mirena Coil, Bayer HealthCare Pharmaceuticals, Inc., Whippany, NJ, USA) may improve compliance, but it is invasive, is not acceptable to all women, and is associated with irregular vaginal bleeding in 82% of cases. Therefore, an alternative treatment for women with endometrial hyperplasia is needed. Metformin, a drug that is often used to treat people with diabetes, has been shown in some human studies to reverse endometrial hyperplasia. However, the effectiveness and safety of metformin for treatment of endometrial hyperplasia remain uncertain. OBJECTIVES: To determine the effectiveness and safety of metformin in treating women with endometrial hyperplasia. SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), PubMed, Google Scholar, OpenGrey, Latin American Caribbean Health Sciences Literature (LILACS), and two trials registers from inception to 10 January 2017. We searched the bibliographies of all included studies and reviews on this topic. We also handsearched the conference abstracts of the European Society of Human Reproduction and Embryology (ESHRE) 2015 and the American Society for Reproductive Medicine (ASRM) 2015. SELECTION CRITERIA: We included randomised controlled trials (RCTs) and cross-over trials comparing metformin (used alone or in combination with other medical therapies) versus placebo or no treatment, any conventional medical treatment, or any other active intervention for women with histologically confirmed endometrial hyperplasia of any type. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for eligibility, extracted data from included studies, and assessed the risk of bias of included studies. We resolved disagreements by discussion or by deferment to a third review author. When study details were missing, review authors contacted study authors. The primary outcome of this review was regression of endometrial hyperplasia histology (with or without atypia) towards normal histology. Secondary outcome measures included recurrence of endometrial hyperplasia, progression of endometrial hyperplasia to endometrial cancer, hysterectomy rate, abnormal uterine bleeding, health-related quality of life, and adverse effects during treatment. MAIN RESULTS: We included three RCTs in which a total of 77 women took part. We rated the quality of the evidence as very low for all outcomes owing to very serious risk of bias (associated with poor reporting, attrition, and limitations in study design) and imprecision.We performed a meta-analysis of two trials with 59 participants. When metformin was compared with megestrol acetate in women with endometrial hyperplasia, we found insufficient evidence to determine whether there were differences between groups for the following outcomes: regression of endometrial hyperplasia histology towards normal histology (odds ratio (OR) 3.34, 95% confidence interval (CI) 0.97 to 11.57, two RCTs, n = 59, very low-quality evidence), hysterectomy rates (OR 0.91, 95% CI 0.05 to 15.52, two RCTs, n = 59, very low-quality evidence), and rates of abnormal uterine bleeding (OR 0.91, 95% CI 0.05 to 15.52, two RCTs, n = 44 , very low-quality evidence). We found no data for recurrence of endometrial hyperplasia or health-related quality of life. Both studies (n = 59) provided data on progression of endometrial hyperplasia to endometrial cancer as well as one (n = 16) reporting some adverse effects in the metformin arm, notably nausea, thrombosis, lactic acidosis, abnormal liver and renal function among others.Another trial including 16 participants compared metformin plus megestrol acetate versus megestrol acetate alone in women with endometrial hyperplasia. We found insufficient evidence to determine whether there were differences between groups for the following outcomes: regression of endometrial hyperplasia histology towards normal histology (OR 9.00, 95% CI 0.94 to 86.52, one RCT, n = 16, very low-quality evidence), recurrence of endometrial hyperplasia among women who achieve regression (OR not estimable, no events recorded, one RCT, n = 8, very low-quality evidence), progression of endometrial hyperplasia to endometrial cancer (OR not estimable, no events recorded, one RCT, n = 13, very low-quality evidence), or hysterectomy rates (OR 0.29, 95% CI 0.01 to 8.37, one RCT, n = 16, very low-quality evidence). Investigators provided no data on abnormal uterine bleeding or health-related quality of life. In terms of adverse effects, three of eight participants (37.5%) in the metformin plus megestrol acetate study arm reported nausea. AUTHORS' CONCLUSIONS: At present, evidence is insufficient to support or refute the use of metformin alone or in combination with standard therapy - specifically, megestrol acetate - versus megestrol acetate alone, for treatment of endometrial hyperplasia. Robustly designed and adequately powered randomised controlled trials yielding long-term outcome data are needed to address this clinical question.


Subject(s)
Endometrial Hyperplasia/drug therapy , Metformin/therapeutic use , Precancerous Conditions/drug therapy , Adult , Aged , Antineoplastic Agents, Hormonal/adverse effects , Antineoplastic Agents, Hormonal/therapeutic use , Disease Progression , Endometrial Hyperplasia/surgery , Female , Humans , Hysterectomy/statistics & numerical data , Megestrol Acetate/adverse effects , Megestrol Acetate/therapeutic use , Metformin/adverse effects , Middle Aged , Precancerous Conditions/surgery , Randomized Controlled Trials as Topic , Recurrence , Uterine Hemorrhage/etiology , Uterine Neoplasms/etiology , Uterine Neoplasms/prevention & control
18.
BMJ Open ; 6(8): e013385, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27531741

ABSTRACT

INTRODUCTION: Endometrial hyperplasia is a precancerous lesion of the endometrium, commonly presenting with uterine bleeding. If managed expectantly, it frequently progresses to endometrial carcinoma, rates of which are increasing dramatically worldwide. However, the established treatment for endometrial hyperplasia (progestogens) involves multiple side effects and leaves the risk of recurrence. Metformin is the most commonly used oral hypoglycaemic agent in type 2 diabetes mellitus. It has also been linked to the reversal of endometrial hyperplasia and may therefore contribute to decreasing the prevalence of endometrial carcinoma without the fertility and side effect consequences of current therapies. However, the efficacy and safety of metformin being used for this therapeutic target is unclear and, therefore, this systematic review will aim to determine this. METHODS AND ANALYSIS: We will search the following trials and databases with no language restrictions: Cochrane Gynaecology and Fertility Specialised Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; EBSCO Cumulative Index to Nursing and Allied Health Literature; PubMed; Google Scholar; ClinicalTrials.gov; the WHO International Trials Registry Platform portal; OpenGrey and the Latin American and Caribbean Health Sciences Literature (LILACS). We will include randomised controlled trials (RCTs) of use of metformin compared with a placebo or no treatment, conventional medical treatment (eg, progestogens) or any other active intervention. Two review authors will independently assess the trial eligibility, risk of bias and extract appropriate data points. Trial authors will be contacted for additional data. The primary review outcome is the regression of endometrial hyperplasia histology towards normal histology. Secondary outcomes include hysterectomy rate; abnormal uterine bleeding; quality of life scores and adverse reactions to treatments. ETHICS AND DISSEMINATION: Dissemination of the completed review will be through the Cochrane Library as well as through presenting the results at appropriate conferences.


Subject(s)
Endometrial Hyperplasia/drug therapy , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Female , Humans , Hysterectomy/statistics & numerical data , Progestins/therapeutic use , Quality of Life , Remission Induction , Systematic Reviews as Topic , Treatment Outcome , Uterine Hemorrhage/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...