Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Mass Spectrom ; 54(6): 527-539, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30997701

ABSTRACT

Phosphorylated proteins play essential roles in many cellular processes, and identification and characterization of the relevant phosphoproteins can help to understand underlying mechanisms. Herein, we report a collision-induced dissociation top-down approach for characterizing phosphoproteins on a quadrupole time-of-flight mass spectrometer. ß-casein, a protein with two major isoforms and five phosphorylatable serine residues, was used as a model. Peaks corresponding to intact ß-casein ions with charged states up to 36+ were detected. Tandem mass spectrometry was performed on ß-casein ions of different charge states (12+ , and 15+ to 28+ ) in order to determine the effects of charge state on dissociation of this protein. Most of the abundant fragments corresponded to y, b ions, and internal fragments caused by cleavage of the N-terminal amide bond adjacent to proline residues (Xxx-Pro). The abundance of internal fragments increased with the charge state of the protein precursor ion; these internal fragments predominantly arose from one or two Xxx-Pro cleavage events and were difficult to accurately assign. The presence of abundant sodium adducts of ß-casein further complicated the spectra. Our results suggest that when interpreting top-down mass spectra of phosphoproteins and other proteins, researchers should consider the potential formation of internal fragments and sodium adducts for reliable characterization.


Subject(s)
Caseins/analysis , Peptide Fragments/chemistry , Amino Acid Sequence , Chromatography, High Pressure Liquid , Phosphorylation , Proline/chemistry , Protein Isoforms/chemistry , Tandem Mass Spectrometry
2.
Toxicol Mech Methods ; 29(1): 53-59, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30084267

ABSTRACT

Environments combining JP-8 jet fuel exposure with heightened ambient noise may accelerate hearing loss induced by noise. To reduce animal use and facilitate kinetic modeling of this military aviation fuel, tissue-specific parameters are required, including water, protein, and lipid content. However, tissues involved in hearing, including cochlea, brainstem, frontal, and temporal lobe, have not been characterized before. Therefore, water content was determined by lyophilization of rat auditory tissues and the protein of the freeze dried remainder was quantified using a bicinchoninic acid assay. Lipids were extracted from fresh-frozen rat auditory tissues and separated into neutral lipids, free fatty acids, neutral phospholipids, and acidic phospholipids using solid phase extraction. Phospholipid fractions were confirmed by 31 P nuclear magnetic resonance analysis showing distinct phospholipid profiles. Lipid content in reference tissues, such as kidney and adipose, confirmed literature values. For the first time, lipid content in the rat auditory pathway was determined showing that total lipid content was lowest in cochlea and highest in brainstem compared with frontal and temporal lobes. Auditory tissues displayed distinct lipid fraction profiles. The information on water, protein, and lipid composition is necessary to validate algorithms used in mathematical models and predict partitioning of chemicals of future interest into these tissues. This research may reduce the use of animals to measure partition coefficients for prospective physiological models.


Subject(s)
Auditory Pathways/chemistry , Lipids/analysis , Models, Theoretical , Proteins/analysis , Water/analysis , Animal Testing Alternatives , Animals , Male , Rats, Inbred F344 , Rats, Sprague-Dawley
3.
Mil Med ; 180(10 Suppl): 67-75, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26444894

ABSTRACT

Integrated Omics research capabilities within the Air Force Research Laboratory began in 2003 with the initiation of a Defense Technology Objective project aimed to identify biomarkers of toxicity occurring within the warfighter as a preclinical indicator. Current methods for determining toxic exposures are not responsive enough or created available for deployment to prevent serious health effects. Using Integrated Omics (Genomics/Epigenetics, Proteomics, and Metabonomics) for biomarker discovery, we have identified specific molecular markers which, once validated, could be used for real-time or near-real-time monitoring of the human response to uncharacterized exposures. The determination and use of validated biomarker sets, when installed on a fieldable biomonitor system, could allow fast determination of subclinical organ damage in response to chemical exposures. Since initiation of this program, our group has applied Omics technologies for biomarker discovery in a number of toxicology and human performance projects, including jet fuel exposures and cognitive fatigue.


Subject(s)
Genomics , Metabolomics , Military Personnel , Occupational Exposure , Aerospace Medicine , Biomarkers/blood , Biomarkers/urine , Biomedical Research , Epigenomics , Hazardous Substances/toxicity , Humans , Hydrocarbons/toxicity , Laboratories , Mental Fatigue/urine , Proteomics
4.
PLoS One ; 9(12): e116172, 2014.
Article in English | MEDLINE | ID: mdl-25549255

ABSTRACT

Expanding interest in oxytocin, particularly the role of endogenous oxytocin in human social behavior, has created a pressing need for replication of results and verification of assay methods. In this study, we sought to replicate and extend previous results correlating plasma oxytocin with trust and trustworthy behavior. As a necessary first step, the two most commonly used commercial assays were compared in human plasma via the addition of a known quantity of exogenous oxytocin, with and without sample extraction. Plasma sample extraction was found to be critical in obtaining repeatable concentrations of oxytocin. In the subsequent trust experiment, twelve samples in duplicate, from each of 82 participants, were collected over approximately six hours during the performance of a Prisoner's Dilemma task paradigm that stressed human interpersonal trust. We found no significant relationship between plasma oxytocin concentrations and trusting or trustworthy behavior. In light of these findings, previous published work that used oxytocin immunoassays without sample extraction should be reexamined and future research exploring links between endogenous human oxytocin and trust or social behavior should proceed with careful consideration of methods and appropriate biofluids for analysis.


Subject(s)
Game Theory , Oxytocin/blood , Trust , Adult , Female , Humans , Male , Psychological Tests , Social Behavior , Young Adult
5.
J Am Soc Mass Spectrom ; 23(2): 225-43, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22170466

ABSTRACT

It has previously been reported that disulfide and backbone bonds of native intact proteins can be concurrently cleaved using electrospray ionization (ESI) and collision-induced dissociation (CID) tandem mass spectrometry (MS/MS). However, the cleavages of disulfide bonds result in different cysteine modifications in product ions, making it difficult to identify the disulfide-bonded proteins via database search. To solve this identification problem, we have developed a pseudo MS(3) approach by combining nozzle-skimmer dissociation (NSD) and CID on a quadrupole time-of-flight (Q-TOF) mass spectrometer using chicken lysozyme as a model. Although many of the product ions were similar to those typically seen in MS/MS spectra of enzymatically derived peptides, additional uncommon product ions were detected including c(i-1) ions (the i(th) residue being aspartic acid, arginine, lysine and dehydroalanine) as well as those from a scrambled sequence. The formation of these uncommon types of product ions, likely caused by the lack of mobile protons, were proposed to involve bond rearrangements via a six-membered ring transition state and/or salt bridge(s). A search of 20 pseudo MS(3) spectra against the Gallus gallus (chicken) database using Batch-Tag, a program originally designed for bottom up MS/MS analysis, identified chicken lysozyme as the only hit with the expectation values less than 0.02 for 12 of the spectra. The pseudo MS(3) approach may help to identify disulfide-bonded proteins and determine the associated post-translational modifications (PTMs); the confidence in the identification may be improved by incorporating the fragmentation characteristics into currently available search programs.


Subject(s)
Databases, Protein , Disulfides/chemistry , Proteins/chemistry , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Animals , Chickens , Ions/chemistry , Models, Molecular , Molecular Sequence Data , Muramidase/chemistry
6.
Anal Chem ; 82(14): 6079-89, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20560528

ABSTRACT

Top-down analysis of proteins has developed rapidly in recent years. However, its application to disulfide-bonded proteins is still limited. Using native chicken lysozyme as a model, we studied the characteristics of collision-induced dissociation (CID) of disulfide-bonded proteins on an LTQ Orbitrap mass spectrometer with electrospray ionization (ESI) in positive mode. For low-charged protein precursor ions with no or limited mobile protons, product ions generated from CID correspond to the concurrent cleavages of disulfide and protein backbone bonds. Up to three disulfide bonds could be easily cleaved with four possible dissociation pathways for each disulfide bond. That led to modifications of the corresponding cysteine residues through addition or subtraction of a hydrogen atom or sulfhydryl group. The protein backbone cleavages mainly occurred at the amide bonds from C-terminal to aspartic acid residues (e.g., ion series of b(18), b(48), y(10), and y(28)), N-C(alpha) bonds from N-terminal to cysteine residues (e.g., c(5), ion series of c(29) and c(63)), and amide bonds from C-terminal to glutamic acid residues (e.g., ion series of b(35)). The characteristics of the top-down analysis for this highly knotted protein will help to understand the general dissociation pattern of disulfide-bonded proteins, which in turn will help to avoid time-consuming bottom-up procedures for the identification of proteins and their modifications.


Subject(s)
Disulfides/chemistry , Muramidase/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Chickens , Hydrogen/chemistry , Sulfhydryl Compounds/chemistry
7.
Anal Chem ; 82(11): 4386-95, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20443621

ABSTRACT

The goal of this work was to design and implement a prototype software tool for the visualization and analysis of small molecule metabolite GC-MS and LC-MS data for biomarker discovery. The key features of the Metabolite Differentiation and Discovery Lab (MeDDL) software platform include support for the manipulation of large data sets, tools to provide a multifaceted view of the individual experimental results, and a software architecture amenable to modification and addition of new algorithms and software components. The MeDDL tool, through its emphasis on visualization, provides unique opportunities by combining the following: easy use of both GC-MS and LC-MS data; use of both manufacturer specific data files as well as netCDF (network Common Data Form); preprocessing (peak registration and alignment in both time and mass); powerful visualization tools; and built in data analysis functionality.


Subject(s)
Computer Graphics , Mass Spectrometry/methods , Software , Algorithms , Animals , Biomarkers/analysis , Chromatography, Gas , Chromatography, Liquid , Male , Principal Component Analysis , Rats
8.
Proteome Sci ; 7: 23, 2009 Jun 29.
Article in English | MEDLINE | ID: mdl-19563675

ABSTRACT

BACKGROUND: The cornea is a specialized transparent connective tissue responsible for the majority of light refraction and image focus for the retina. There are three main layers of the cornea: the epithelium that is exposed and acts as a protective barrier for the eye, the center stroma consisting of parallel collagen fibrils that refract light, and the endothelium that is responsible for hydration of the cornea from the aqueous humor. Normal cornea is an immunologically privileged tissue devoid of blood vessels, but injury can produce a loss of these conditions causing invasion of other processes that degrade the homeostatic properties resulting in a decrease in the amount of light refracted onto the retina. Determining a measure and drift of phenotypic cornea state from normal to an injured or diseased state requires knowledge of the existing protein signature within the tissue. In the study of corneal proteins, proteomics procedures have typically involved the pulverization of the entire cornea prior to analysis. Separation of the epithelium and endothelium from the core stroma and performing separate shotgun proteomics using liquid chromatography/mass spectrometry results in identification of many more proteins than previously employed methods using complete pulverized cornea. RESULTS: Rabbit corneas were purchased, the epithelium and endothelium regions were removed, proteins processed and separately analyzed using liquid chromatography/mass spectrometry. Proteins identified from separate layers were compared against results from complete corneal samples. Protein digests were separated using a six hour liquid chromatographic gradient and ion-trap mass spectrometry used for detection of eluted peptide fractions. The SEQUEST database search results were filtered to allow only proteins with match probabilities of equal or better than 10-3 and peptides with a probability of 10-2 or less with at least two unique peptides isolated within the run along with default Xcorr values. These parameters resulted in the identification of over 350 proteins, including over 225 new proteins not previously detected in the cornea by mass spectrometry. In addition, corneal layer separation resulted in identification of nearly every protein that was identified in the complete cornea assay. The epithelium and endothelium each revealed many unique proteomes specific to each layer. In the endothelium, the protein olfactomedin-like 3 was identified for the first time in the cornea by this analysis. Olfactomedin-3 is a neuronal expressed protein also known as optimedin that stimulates formation of cell adherent and cell-cell tight junctions and its expression modulates cytoskeleton organization and cell migration. However, the function of this protein in rabbit corneal endothelium is currently unknown. CONCLUSION: This manuscript presents a description of a more comprehensive proteomic profile for mammalian cornea compared to past methods. The use of simple dissection procedures of the tissue and the application of long chromatographic gradients, many more proteins can be identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...