Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 122(15): 153601, 2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31050504

ABSTRACT

We measure the quantum fluctuations of a single acoustic mode in a volume of superfluid He that is coupled to an optical cavity. Specifically, we monitor the Stokes and anti-Stokes light scattered by a standing acoustic wave that is confined by the cavity mirrors. The intensity of these signals (and their cross-correlation) exhibits the characteristic features of the acoustic wave's zero-point motion and the quantum backaction of the intracavity light. While these features are also observed in the vibrations of solid objects and ultracold atomic gases, their observation in superfluid He opens the possibility of exploiting the remarkable properties of this material to access new regimes of quantum optomechanics.

2.
Nat Commun ; 6: 6232, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25708487

ABSTRACT

Cavity optomechanics offers powerful methods for controlling optical fields and mechanical motion. A number of proposals have predicted that this control can be extended considerably in devices where multiple cavity modes couple to each other via the motion of a single mechanical oscillator. Here we study the dynamic properties of such a multimode optomechanical device, in which the coupling between cavity modes results from mechanically induced avoided crossings in the cavity's spectrum. Near the avoided crossings we find that the optical spring shows distinct features that arise from the interaction between cavity modes. Precisely at an avoided crossing, we show that the particular form of the optical spring provides a classical analogue of a quantum non-demolition measurement of the intracavity photon number. The mechanical oscillator's Brownian motion, an important source of noise in these measurements, is minimized by operating the device at cryogenic temperature (500 mK).

3.
Phys Rev Lett ; 113(9): 095701, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25215992

ABSTRACT

We consider random nondirected networks subject to dynamics conserving vertex degrees and study, analytically and numerically, equilibrium three-vertex motif distributions in the presence of an external field h coupled to one of the motifs. For small h, the numerics is well described by the "chemical kinetics" for the concentrations of motifs based on the law of mass action. For larger h, a transition into some trapped motif state occurs in Erdos-Rényi networks. We explain the existence of the transition by employing the notion of the entropy of the motif distribution and describe it in terms of a phenomenological Landau-type theory with a nonzero cubic term. A localization transition should always occur if the entropy function is nonconvex. We conjecture that this phenomenon is the origin of the motifs' pattern formation in real evolutionary networks.


Subject(s)
Models, Theoretical , Entropy
4.
Phys Rev Lett ; 112(1): 013602, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24483898

ABSTRACT

In this Letter we study a system consisting of two nearly degenerate mechanical modes that couple to a single mode of an optical cavity. We show that this coupling leads to nearly complete (99.5%) hybridization of the two mechanical modes into a bright mode that experiences strong optomechanical interactions and a dark mode that experiences almost no optomechanical interactions. We use this hybridization to transfer energy between the mechanical modes with 40% efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...