Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 10(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202878

ABSTRACT

In electromembrane systems, the theoretical study of salt ion transport usually uses mathematical models of salt ion transport in the depleted diffusion layer of ion-exchange membranes. This study uses a one-dimensional mathematical model of salt ion transport in a cross-section of a desalination channel formed by anion-exchange and cation-exchange membranes, taking into account an effect of a dissociation/recombination reaction of water molecules. The reaction on the one hand leads to an overlimiting mass transfer due to the effect of exaltation of the limiting current. On the other hand, an appearance of new electric charge carriers (hydrogen and hydroxyl ions) can reduce the space charge that occurs in membranes and suppress an electroconvective mechanism of overlimiting transport. Thus, there is a problem of studying these phenomena together, taking into account their mutual influence, and this article is devoted to the solution of this problem. Theoretically, using a method of mathematical modeling and numerical research, main regularities are established; in particular, it is shown that the dissociation/recombination reaction of water molecules does not lead to the destruction of the double electric layer at the membranes, but also creates a new double electric layer in the middle of the desalination channel. Thus, the space charge and the dissociation/recombination reaction significantly affect each other and simultaneously the transport of salt ions.

2.
Membranes (Basel) ; 9(7)2019 Jul 14.
Article in English | MEDLINE | ID: mdl-31337131

ABSTRACT

Ion-exchange membranes (IEMs) find more and more applications; the success of an application depends on the properties of the membranes selected for its realization. For the first time, the results of a comprehensive characterization of the transport properties of IEMs from three manufactures (Astom, Japan; Shchekinoazot, Russia; and Fujifilm, The Netherlands) are reported. Our own and literature data are presented and analyzed using the microheterogeneous model. Homogeneous Neosepta AMX and CMX (Astom), heterogeneous MA-41 and MK-40 (Shchekinoazot), and AEM Type-I, AEM Type-II, AEM Type-X, as well as CEM Type-I, CEM Type-II, and CEM Type-X produced by the electrospinning method (Fujifim) were studied. The concentration dependencies of the conductivity, diffusion permeability, as well as the real and apparent ion transport numbers in these membranes were measured. The counterion transport number characterizing the membrane permselectivity increases in the following order: CEM Type-I ≅ MA-41 < AEM Type-I < MK-40 < CMX ≅ CEM Type-II ≅ CEM Type-X ≅ AEM Type-II < AMX < AEM Type-X. It is shown that the properties of the AEM Type-I and CEM Type-I membranes are close to those of the heterogeneous MA-41 and MK-40 membranes, while the properties of Fujifilm Type-II and Type-X membranes are close to those of the homogeneous AMX and CMX membranes. This difference is related to the fact that the Type-I membranes have a relatively high parameter f2, the volume fraction of the electroneutral solution filling the intergel spaces. This high value is apparently due to the open-ended pores, formed by the reinforcing fabric filaments of the Type-I membranes, which protrude above the surface of these membranes.

SELECTION OF CITATIONS
SEARCH DETAIL
...