Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(8): e0244701, 2021.
Article in English | MEDLINE | ID: mdl-34411119

ABSTRACT

The Bicoid (Bcd) protein is a primary determinant of early anterior-posterior (AP) axis specification in Drosophila embryogenesis. This morphogen is spatially distributed in an anterior-high gradient, and affects particular AP cell fates in a concentration-dependent manner. The early distribution and dynamics of the bicoid (bcd) mRNA, the source for the Bcd protein gradient, is not well understood, leaving a number of open questions for how Bcd positional information develops and is regulated. Confocal microscope images of whole early embryos, stained for bcd mRNA or the Staufen (Stau) protein involved in its transport, were processed to extract quantitative AP intensity profiles at two depths (apical-under the embryo surface but above the nuclear layer; and basal-below the nuclei). Each profile was quantified by a two- (or three-) exponential equation. The parameters of these equations were used to analyze the early developmental dynamics of bcd. Analysis of 1D profiles was compared with 2D intensity surfaces from the same images. This approach reveals strong early changes in bcd and Stau, which appear to be coordinated. We can unambiguously discriminate three stages in early development using the exponential parameters: pre-blastoderm (1-9 cleavage cycle, cc), syncytial blastoderm (10-13 cc) and cellularization (from 14A cc). Key features which differ in this period are how fast the first exponential (anterior component) of the apical profile drops with distance and whether it is higher or lower than the basal first exponential. We can further discriminate early and late embryos within the pre-blastoderm stage, depending on how quickly the anterior exponential drops. This relates to the posterior-wards spread of bcd in the first hour of development. Both bcd and Stau show several redistributions in the head cytoplasm, quite probably related to nuclear activity: first shifting inwards towards the core plasm, forming either protrusions (early pre-blastoderm) or round aggregations (early nuclear cleavage cycles, cc, 13 and 14), then moving to the embryo surface and spreading posteriorly. These movements are seen both with the 2D surface study and the 1D profile analysis. The continued spreading of bcd can be tracked from the time of nuclear layer formation (later pre-blastoderm) to the later syncytial blastoderm stages by the progressive loss of steepness of the apical anterior exponential (for both bcd and Stau). Finally, at the beginning of cc14 (cellularization stage) we see a distinctive flip from the basal anterior gradient being higher to the apical gradient being higher (for both bcd and Stau). Quantitative analysis reveals substantial (and correlated) bcd and Stau redistributions during early development, supporting that the distribution and dynamics of bcd mRNA are key factors in the formation and maintenance of the Bcd protein morphogenetic gradient. This analysis reveals the complex and dynamic nature of bcd redistribution, particularly in the head cytoplasm. These resemble observations in oogenesis; their role and significance have yet to be clarified. The observed co-localization during redistribution of bcd and Stau may indicate the involvement of active transport.


Subject(s)
Drosophila/genetics , Animals , Body Patterning/genetics , Cell Nucleus/genetics , Cytoplasm/genetics , Drosophila Proteins/genetics , Embryo, Nonmammalian/physiology , Embryonic Development/genetics , Homeodomain Proteins/genetics , Morphogenesis/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics
2.
Nucleic Acids Res ; 48(D1): D570-D578, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31696235

ABSTRACT

MGnify (http://www.ebi.ac.uk/metagenomics) provides a free to use platform for the assembly, analysis and archiving of microbiome data derived from sequencing microbial populations that are present in particular environments. Over the past 2 years, MGnify (formerly EBI Metagenomics) has more than doubled the number of publicly available analysed datasets held within the resource. Recently, an updated approach to data analysis has been unveiled (version 5.0), replacing the previous single pipeline with multiple analysis pipelines that are tailored according to the input data, and that are formally described using the Common Workflow Language, enabling greater provenance, reusability, and reproducibility. MGnify's new analysis pipelines offer additional approaches for taxonomic assertions based on ribosomal internal transcribed spacer regions (ITS1/2) and expanded protein functional annotations. Biochemical pathways and systems predictions have also been added for assembled contigs. MGnify's growing focus on the assembly of metagenomic data has also seen the number of datasets it has assembled and analysed increase six-fold. The non-redundant protein database constructed from the proteins encoded by these assemblies now exceeds 1 billion sequences. Meanwhile, a newly developed contig viewer provides fine-grained visualisation of the assembled contigs and their enriched annotations.


Subject(s)
Metagenome , Microbiota , Phylogeny , Software , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , DNA, Ribosomal Spacer/genetics , Databases, Genetic , Metagenomics/methods
3.
J Comput Biol ; 25(11): 1220-1230, 2018 11.
Article in English | MEDLINE | ID: mdl-30117746

ABSTRACT

Spatial pattern formation of the primary anterior-posterior morphogenetic gradient of the transcription factor Bicoid (Bcd) has been studied experimentally and computationally for many years. Bcd specifies positional information for the downstream segmentation genes, affecting the fly body plan. More recently, a number of researchers have focused on the patterning dynamics of the underlying bcd messenger RNA (mRNA) gradient, which is translated into Bcd protein. New, more accurate techniques for visualizing bcd mRNA need to be combined with quantitative signal extraction techniques to reconstruct the bcd mRNA distribution. Here, we present a robust technique for quantifying gradients with a two-exponential model. This approach (1) has natural, biologically relevant parameters and (2) is invariant to linear transformations of the data arising due to variation in experimental conditions (e.g., microscope settings, nonspecific background signal). This allows us to quantify bcd mRNA gradient variability from embryo to embryo (important for studying the robustness of developmental regulatory networks); sort out atypical gradients; and classify embryos to developmental stage by quantitative gradient parameters.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Models, Theoretical , RNA, Messenger/genetics , Trans-Activators/genetics , Animals , Drosophila melanogaster/embryology , Embryo, Nonmammalian/cytology , Morphogenesis , RNA, Messenger/metabolism
4.
Biomed Res Int ; 2015: 986436, 2015.
Article in English | MEDLINE | ID: mdl-26495320

ABSTRACT

Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually very noisy. This noise comes from both experimental (technical/methodological) and true biological sources (from stochastic biochemical processes). In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer around a spherical surface. The method includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern extraction by Shaped 3D singular spectrum analysis (SSA), and interpolation back to original nuclear positions. The approach is demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development). The method is tested on several different data geometries (e.g., nuclear positions) and different forms of gene expression patterns. Fully 3D datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to data processing and analysis in this growing field.


Subject(s)
Embryo, Mammalian/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental/physiology , Microscopy, Fluorescence/methods , Zebrafish/embryology , Zebrafish/metabolism , Animals , Embryo, Mammalian/embryology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Fluorescence/methods
5.
Biomed Res Int ; 2015: 689745, 2015.
Article in English | MEDLINE | ID: mdl-25945341

ABSTRACT

In recent years, with the development of automated microscopy technologies, the volume and complexity of image data on gene expression have increased tremendously. The only way to analyze quantitatively and comprehensively such biological data is by developing and applying new sophisticated mathematical approaches. Here, we present extensions of 2D singular spectrum analysis (2D-SSA) for application to 2D and 3D datasets of embryo images. These extensions, circular and shaped 2D-SSA, are applied to gene expression in the nuclear layer just under the surface of the Drosophila (fruit fly) embryo. We consider the commonly used cylindrical projection of the ellipsoidal Drosophila embryo. We demonstrate how circular and shaped versions of 2D-SSA help to decompose expression data into identifiable components (such as trend and noise), as well as separating signals from different genes. Detection and improvement of under- and overcorrection in multichannel imaging is addressed, as well as the extraction and analysis of 3D features in 3D gene expression patterns.


Subject(s)
Drosophila Proteins/biosynthesis , Drosophila melanogaster/genetics , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Animals , Drosophila melanogaster/growth & development , Embryo, Nonmammalian , Gene Expression Profiling , Imaging, Three-Dimensional , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...