Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37512292

ABSTRACT

The aim of this work is to study the structural, dielectric, and mechanical properties of aluminum oxide ceramics with the triple sintering additive 4CuO-TiO2-2Nb2O5. With an increase in sintering temperature from 1050 to 1500 °C, the average grain size and the microhardness value at a load of 100 N (HV0.1) increased with increasing density. It has been shown that at a sintering temperature of 1300 °C, the addition of a 4CuO-TiO2-2Nb2O5 additive increases the low-frequency permittivity (2-500 Hz) in alumina ceramic by more than an order of magnitude due to the presence of a quadruple perovskite phase. At the same time, the density of such ceramics reached 89% of the theoretical density of α-Al2O3, and the microhardness value HV0.1 was 1344. It was observed that the introduction of 5 wt.% 4CuO-TiO2-2Nb2O5 in the raw mixture remarkably increases values of shrinkage and density of sintered ceramics. Overall, the results of this work confirmed that introducing the 4CuO-TiO2-2Nb2O5 sintering additive in the standard solid-phase ceramics route can significantly reduce the processing temperature of alumina ceramics, even when micron-sized powders are used as a starting material. The obtained samples demonstrated the potential of α-Al2O3 with the triple additive in such applications as electronics, microwave technology, and nuclear power engineering.

2.
Materials (Basel) ; 16(14)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37512449

ABSTRACT

The article considers the effect of doping with magnesium oxide (MgO) on changes in the properties of lithium-containing ceramics based on lithium metazirconate (Li2ZrO3). There is interest in this type of ceramics on account of their prospects for application in tritium production in thermonuclear power engineering, as well as several other applications related to alternative energy sources. During the investigations undertaken, it was found that variation in the MgO dopant concentration above 0.10-0.15 mol resulted in the formation of impurity inclusions in the ceramic structure in the form of a MgLi2ZrO4 phase, the presence of which resulted in a rise in the density of the ceramics, along with elevation in resistance to external influences. Moreover, during experimental work on the study of the thermal stability of the ceramics to external influences, it was found that the formation of two-phase ceramics resulted in growth in the preservation of stable strength properties during high-temperature cyclic tests. The decrease in strength characteristics was observed to be less than 1%.

3.
Materials (Basel) ; 16(11)2023 May 28.
Article in English | MEDLINE | ID: mdl-37297165

ABSTRACT

This paper presents simulation results of the ionization losses of incident He2+ ions with an energy of 40 keV during the passage of incident ions in the near-surface layer of alloys based on TiTaNbV with a variation of alloy components. For comparison, data on the ionization losses of incident He2+ ions in pure niobium, followed by the addition of vanadium, tantalum, and titanium to the alloy in equal stoichiometric proportions, are presented. With the use of indentation methods, the dependences of the change in the strength properties of the near-surface layer of alloys were determined. It was established that the addition of Ti to the composition of the alloy leads to an increase in resistance to crack resistance under high-dose irradiation, as well as a decrease in the degree of swelling of the near-surface layer. During tests on the thermal stability of irradiated samples, it was found that swelling and degradation of the near-surface layer of pure niobium affects the rate of oxidation and subsequent degradation, while for high-entropy alloys, an increase in the number of alloy components leads to an increase in resistance to destruction.

4.
Membranes (Basel) ; 13(5)2023 May 07.
Article in English | MEDLINE | ID: mdl-37233556

ABSTRACT

This paper reports the synthesis of composite track-etched membranes (TeMs) modified with electrolessly deposited copper microtubules using copper deposition baths based on environmentally friendly and non-toxic reducing agents (ascorbic acid (Asc), glyoxylic acid (Gly), and dimethylamine borane (DMAB)), and comparative testing of their lead(II) ion removal capacity via batch adsorption experiments. The structure and composition of the composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. The optimal conditions for copper electroless plating were determined. The adsorption kinetics followed a pseudo-second-order kinetic model, which indicates that adsorption is controlled by the chemisorption process. A comparative study was conducted on the applicability of the Langmuir, Freundlich, and Dubinin-Radushkevich adsorption models to define the equilibrium isotherms and the isotherm constants for the prepared composite TeMs. Based on the regression coefficients R2, it has been shown that the Freundlich model better describes the experimental data of the composite TeMs on the adsorption of lead(II) ions.

5.
Materials (Basel) ; 16(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903076

ABSTRACT

The aim of this paper is to study the effect of variation in the component ratio of (1-x)Si3N4-xAl2O3 ceramics on the phase composition, strength and thermal properties of ceramics. To obtain ceramics and their further study, the solid-phase synthesis method combined with thermal annealing of samples at a temperature of 1500 °C typical for the initialization of phase transformation processes was used. The relevance and novelty of this study lies in obtaining new data on the processes of phase transformations with a variation in the composition of ceramics, as well as determining the effect of the phase composition on the resistance of ceramics to external influences. According to X-ray phase analysis data, it was found that an increase in the Si3N4 concentration in the composition of ceramics leads to a partial displacement of the tetragonal phase of SiO2 and Al2(SiO4)O and an increase in the contribution of Si3N4. Evaluation of the optical properties of the synthesized ceramics depending on the ratio of the components showed that the formation of the Si3N4 phase leads to an increase in the band gap and the absorbing ability of the ceramics due to the formation of additional absorption bands from 3.7-3.8 eV. Analysis of the strength dependences showed that an increase in the contribution of the Si3N4 phase with subsequent displacement of the oxide phases leads to a strengthening of the ceramic by more than 15-20%. At the same time, it was found that a change in the phase ratio leads to the hardening of ceramics, as well as an increase in crack resistance.

6.
Materials (Basel) ; 16(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36984246

ABSTRACT

The purpose of this paper is to study the effect of PbO doping of multicomponent composite glass-like ceramics based on TeO2, WO3, Bi2O3, MoO3, and SiO2, which are one of the promising materials for gamma radiation shielding. According to X-ray diffraction data, it was found that the PbO dopant concentration increase from 0.10 to 0.20-0.25 mol results in the initialization of the phase transformation and structural ordering processes, which are expressed in the formation of SiO2 and PbWO4 phases, and the crystallinity degree growth. An analysis of the optical properties showed that a change in the ratio of the contributions of the amorphous and ordered fractions leads to the optical density increase and the band gap alteration, as well as a variation in the optical characteristics. During the study of the strength and mechanical properties of the synthesized ceramics, depending on the dopant concentration, it was found that when inclusions in the form of PbWO4 are formed in the structure, the strength characteristics increase by 70-80% compared to the initial data, which indicates the doping efficiency and a rise in the mechanical strength of ceramics to external influences. During evaluation of the shielding protective characteristics of the synthesized ceramics, it was revealed that the formation of PbWO4 in the structure results in a rise in the high-energy gamma ray absorption efficiency.

7.
Materials (Basel) ; 16(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36770035

ABSTRACT

The main purpose of this study is to test a hypothesis about the effect of grain size on the resistance to destruction and changes in the strength and mechanical properties of oxide ceramics subjected to irradiation. WO3 powders were chosen as objects of study, which have a number of unique properties that meet the requirements for their use as a basis for inert matrices of dispersed nuclear fuel. The grain-size variation in WO3 ceramics was investigated by mechanochemical grinding of powders with different grinding speeds. Grinding conditions were experimentally selected to obtain powders with a high degree of size homogeneity, which were used for further research. During evaluation of the strength properties, it was found that a decrease in the grain size leads to an increase in the crack resistance, as well as the hardness of ceramics. The increase in strength properties can be explained by an increase in the dislocation density and the volume contribution of grain boundaries, which lead to hardening and an increase in resistance. During determination of the radiation damage resistance, it was found that a decrease in grain size to 50-70 nm leads to a decrease in the degree of radiation damage and the preservation of the resistance of irradiated ceramics to destruction and cracking.

8.
Nanomaterials (Basel) ; 12(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36500744

ABSTRACT

The paper presents the results of a study of iron oxide nanoparticles obtained by chemical coprecipitation, coated (Fe3O4@Au) and not coated (Fe3O4) with gold, which were subjected to thermal annealing. To characterize the nanoparticles under study, scanning and transmission electron microscopy, X-ray diffraction, and Mössbauer spectroscopy on 57Fe nuclei were used, the combination of which made it possible to establish a sequence of phase transformations, changes in morphological and structural characteristics, as well as parameters of hyperfine interactions. During the studies, it was found that thermal annealing of nanoparticles leads to phase transformation processes in the following sequence: nonstoichiometric magnetite (Fe3-γO4) → maghemite (γ-Fe2O3) → hematite (α-Fe2O3), followed by structural ordering and coarsening of nanoparticles. It is shown that nanoparticles of nonstoichiometric magnetite with and without gold coating are in the superparamagnetic state with a slow relaxation rate. The magnetic anisotropy energy of nonstoichiometric magnetite is determined as a function of the annealing temperature. An estimate was made of the average size of the region of magnetic ordering of Fe atoms in nonstoichiometric magnetite, which is in good agreement with the data on the average sizes of nanoparticles determined by scanning electron microscopy.

9.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36234438

ABSTRACT

The purpose of this study is to examine the influence of carbon nanodiamonds on the reinforcement and hardening of telluride glasses, as well as to establish the dependence of the strengthening properties and optical characteristics of glasses on CND concentration. According to X-ray diffraction data, the synthesized glasses have an amorphous structure despite the addition of CNDs, and at high concentrations of CNDs, reflections characteristic of small crystalline particles of carbon nanodiamonds are observed. An analysis of the strength properties of glasses depending on the concentration of the CND dopant showed that an increase in the CND concentration to 0.10-0.15 mol. leads to an increase in hardness by 33-50% in comparison with undoped samples. The studies carried out to determine the resistance to external influences found that doping leads to an increase in the resistance of strength characteristics against destruction and embrittlement, and in the case of high concentrations, the change in strength properties is minimal, which indicates a high ceramic stability degree. The study of the radiation resistance of synthesized glasses found that the addition of CNDs leads to an increase in resistance to radiation damage when irradiated with gamma rays, while also maintaining resistance to high radiation doses. The study of the shielding characteristics found that the addition of CNDs is most effective in shielding gamma rays with energies of 130-660 MeV.

10.
Nanomaterials (Basel) ; 12(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296872

ABSTRACT

The paper studies the effect of Li2SiO3/Li4SiO4 phase formation in lithium-containing ceramics on the strength and thermophysical characteristics of lithium-containing ceramics, which have great prospects for use as blanket materials for tritium propagation. During the phase composition analysis of the studied ceramics using the X-ray diffraction method, it was found that an increase in the lithium component during synthesis leads to the formation of an additional orthorhombic Li2SiO3 phase, and the main phase in ceramics is the monoclinic Li4SiO4 phase. An analysis of the morphological features of the synthesized ceramics showed that an increase in the Li2SiO3 impurity phase leads to ceramic densification and the formation of impurity grains near grain boundaries and joints. During determination of the strength characteristics of the studied ceramics, a positive effect of an increase in the Li2SiO3 impurity phase and dimensional factors on the strengthening and increase in the resistance to external influences during compression of ceramics was established. During tests for resistance to long-term thermal heating, it was found that for two-phase ceramics, the decrease in strength and thermophysical characteristics after 500 h of annealing was less than 5%, which indicates a high resistance and stability of these ceramics in comparison with single-phase orthosilicate ceramics.

11.
Nanomaterials (Basel) ; 12(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079946

ABSTRACT

In this work, we consider the effect of irradiation with heavy Kr15+ and Xe22+ ions on the change in the structural and strength properties of WO3 microparticles, which are among the candidates for inert matrix materials. Irradiation with heavy Kr15+ and Xe22+ ions was chosen to determine the possibility of simulation of radiation damage comparable to the impact of fission fragments. During the studies, it was found that the main changes in the structural properties with an increase in the irradiation fluence are associated with the crystal lattice deformation and its anisotropic distortion, which is most pronounced during irradiation with heavy Kr15+ ions. An assessment of the gaseous swelling effect due to the radiation damage accumulation showed that a change in the ion type during irradiation leads to an increase in the swelling value by more than 8-10%. Results of strength changes showed that the most intense decrease in the hardness of the near-surface layer is observed when the fluence reaches more than 1012 ion/cm2, which is typical for the effect of overlapping radiation damage in the material. The dependences obtained for the change in structural and strength properties can later be used to evaluate the effectiveness of the use of refractory oxide materials for their use in the creation of inert matrices of nuclear fuel.

12.
Materials (Basel) ; 15(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36079451

ABSTRACT

This article considers the effect of MoO3 and SiO additives in telluride glasses on the shielding characteristics and protection of electronic microcircuits operating under conditions of increased radiation background or cosmic radiation. MoO3 and SiO dopants were chosen because their properties, including their insulating characteristics, make it possible to avoid breakdown processes caused by radiation damage. The relevance of the study consists in the proposed method of using protective glasses to protect the most important components of electronic circuits from the negative effects of ionizing radiation, which can cause failures or lead to destabilization of the electronics. Evaluation of the shielding efficiency of gamma and electron radiation was carried out using a standard method for determining the change in the threshold voltage (∆U) value of microcircuits placed behind the shield and subjected to irradiation with various doses. It was established that an increase in the content of MoO3 and SiO in the glass structure led to an increase of up to 90% in the gamma radiation shielding efficiency, while maintaining the stability of microcircuit performance under prolonged exposure to ionizing radiation. The results obtained allow us to conclude that the use of protective glasses based on TeO2-WO3-Bi2O3-MoO3-SiO is highly promising for creating local protection for the main components of microcircuits and semiconductor devices operating under conditions of increased background radiation or cosmic radiation.

13.
Materials (Basel) ; 15(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36013709

ABSTRACT

The paper considers the hydrogenation processes in Li2TiO3 ceramics under irradiation with protons with an energy of 500 keV and fluences of 1 × 1010-5 × 1017 ion/cm2. The choice of the type of irradiation, as well as the irradiation fluences, is based on the possibilities of modeling hydrogenation processes and studying the kinetics of structural changes caused by the accumulation of radiation damage. The choice of Li2TiO3 ceramics as objects of research is due to their prospects for using as blanket materials of thermonuclear reactors for the tritium production and accumulation. It was found that the formation of point defects and their subsequent evolution associated with the formation of complex compounds and the filling of pores, followed by the formation of gas-filled bubbles, the presence of which leads to a decrease in crack resistance and resistance to destruction of the near-surface layer. Based on the data on structural changes and evolution of the crystal lattice parameters, its swelling, a description of the destruction processes associated with hydrogenation in Li2TiO3 ceramics was proposed. Also, during the studies, it was found that at irradiation fluences above 1 × 1017 ion/cm2, the appearance of impurity inclusions characteristic of the TiO2 phase was observed, the presence of which indicates the crystal lattice destruction processes because of accumulation of radiation damage and deformations caused by them. Critical doses are established at which there is a sharp deterioration in strength and crack resistance, reflecting the resistance of ceramics to mechanical external influences.

14.
Gels ; 8(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35877536

ABSTRACT

Lithium-containing ceramics have several great potential uses for tritium production, as well as its accumulation. However, their use is limited due to their poor resistance to external influences, mechanical pressure, and temperature changes. In this work, initial nanostructured ceramic powders were obtained using the sol-gel method, by mixing TiO2 and LiClO4·3H2O with the subsequent addition of NiO nanoparticles to the reaction mixture; these powders were subsequently subjected to thermal annealing at a temperature of 1000 °C for 10 h. Thermal annealing was used to initiate the phase transformation processes, and to remove structural distortions resulting from synthesis. During the study, it was found that the addition of NiO nanoparticles leads to the formation of solid solutions by a type of Li0.94Ni1.04Ti2.67O7 substitution, which leads to an increase in the crystallinity and structural ordering degree. At the same time, the grain sizes of the synthesized ceramics change their shape from rhomboid to spherical. During analysis of the strength characteristics, it was found that the formation of Li0.94Ni1.04Ti2.67O7 in the structure leads to an increase in hardness and crack resistance; this change is associated with dislocation. When analyzing changes in resistance to cracking, it was found that, during the formation of the Li0.94Ni1.04Ti2.67O7 phase in the structure and the subsequent displacement of the Li2TiO3 phase from the composition, the crack resistance increases by 15% and 37%, respectively, which indicates an increase in the resistance of ceramics to cracking and the formation of microcracks under external influences. This hardening and the reinforcing effect are associated with the replacement of lithium ions by nickel ions in the crystal lattice structure.

15.
Nanomaterials (Basel) ; 12(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35683644

ABSTRACT

The dependences of changes in the strength properties of nitride and carbide ceramics under high temperature irradiation with Kr15+ and Xe22+ heavy ions at irradiation doses of 1012-1015 ions/cm2 are presented in this work. The irradiation was chosen to simulate radiation damage processes that are closest to the real conditions of reactor tests in operating modes of increased temperatures. Polycrystalline ceramics based on AlN, Si3N4 nitrides, and SiC carbides were chosen as objects of research, as they have great prospects for use as a basis for structural materials for high-temperature nuclear reactors, as well as materials for nuclear waste disposal. During these studies the effect of radiation damage caused by irradiation with different fluences on the change in mechanical strength and hardness were determined, and the mechanisms causing these changes depending on the type of irradiated materials were proposed. The novelty of this study is in the results obtained determining the stability of the strength and thermophysical parameters of nitride and carbide ceramics exposed to high-temperature irradiation, which made it possible to determine the main stages and mechanisms for changing these parameters depending on the accumulated radiation damage. The relevance of this study consists not only in obtaining new data on the properties of structural materials exposed to ionizing radiation, but also in the possibility of determining the mechanisms of radiation damage in ceramics.

16.
Nanomaterials (Basel) ; 12(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35745319

ABSTRACT

The aim of this work is to study the properties of nanostructured (1 - x)ZrO2 - xCeO2 composite ceramics, depending on the content of oxide components, as well as to establish the relationship between the phase composition of ceramics and strength properties. The choice of (1- x)ZrO2 - xCeO2 composite ceramics as objects of study is due to the great prospects for using them as the basis for inert matrix materials for nuclear dispersed fuel, which can replace traditional uranium fuel in high-temperature nuclear reactors. Using X-ray diffraction, it was found that the variation of the oxide components leads to phase transformations of the Monoclinic-ZrO2 → Monoclinic - Zr0.98Ce0.02O2/Tetragonal - ZrO2 → Tetragonal - Zr0.85Ce0.15O2 → Tetragonal - ZrCeO4/Ce0.1Zr0.9O2 type. As a result of mechanical tests, it was found that the formation of tetragonal phases in the structure of ceramics leads to strengthening of ceramics and an increase in crack resistance, which is due not only to an increase in the crystallinity degree, but also to the effect of dislocation hardening associated with a decrease in grain size. It has been established that a change in the phase composition due to phase transformations and displacement of the ZrO2 phase from the ceramic structure with its transformation into the phase of partial replacement of Zr0.85Ce0.15O2 or Ce0.1Zr0.9O2 leads to the strengthening of ceramics by more than 3.5-4 times. The results of resistance to crack formation under single compression showed that the formation of the ZrCeO4 phase in the structure of ceramics leads to an increase in the resistance of ceramics to cracking by more than 2.5 times.

17.
Materials (Basel) ; 16(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36614538

ABSTRACT

Composite oxide ceramics CeZrO4-YZrO3 obtained by mechanochemical synthesis were chosen as objects of study. The most dangerous type of radiation defect in structural materials is associated with helium accumulation in the structure of the near-surface layer. This can lead to the destruction and swelling of the material, resulting in a decrease in its strength and thermal characteristics. During the studies, it was found that the most significant structural changes (deformation of the crystal lattice, the magnitude of microdistortions of the crystal lattice) are observed with irradiation fluence above 5×1016 ion/cm2, while the nature of the changes is exponential. X-ray diffraction analysis found that the nature of the crystal structure deformation has a pronounced type of stretching due to the accumulation of implanted helium and its subsequent agglomeration. A comparative analysis with data on microdistortions of the crystal lattice and the values of microhardness and softening of ZrO2 and CeO2 showed that two-phase ceramics of the cubic type CeZrO4-YZrO3 are more resistant to radiation-induced degradation than single-phase ZrO2 and CeO2. Results of strength and thermophysical characteristics showed that the presence of two phases increases resistance to destruction and disorder, leading to a decrease in strength and thermal conductivity.

18.
Int J Mol Sci ; 22(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34445393

ABSTRACT

In this article, a novel method of simultaneous carborane- and gadolinium-containing compounds as efficient agents for neutron capture therapy (NCT) delivery via magnetic nanocarriers is presented. The presence of both Gd and B increases the efficiency of NCT and using nanocarriers enhances selectivity. These factors make NCT not only efficient, but also safe. Superparamagnetic Fe3O4 nanoparticles were treated with silane and then the polyelectrolytic layer was formed for further immobilization of NCT agents. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) and Mössbauer spectroscopies, dynamic light scattering (DLS), scanning electron microscopy (SEM), vibrating-sample magnetometry (VSM) were applied for the characterization of the chemical and element composition, structure, morphology and magnetic properties of nanocarriers. The cytotoxicity effect was evaluated on different cell lines: BxPC-3, PC-3 MCF-7, HepG2 and L929, human skin fibroblasts as normal cells. average size of nanoparticles is 110 nm; magnetization at 1T and coercivity is 43.1 emu/g and 8.1, respectively; the amount of B is 0.077 mg/g and the amount of Gd is 0.632 mg/g. Successful immobilization of NCT agents, their low cytotoxicity against normal cells and selective cytotoxicity against cancer cells as well as the superparamagnetic properties of nanocarriers were confirmed by analyses above.


Subject(s)
Boron Neutron Capture Therapy/methods , Boron/pharmacology , Gadolinium/pharmacology , Boron/chemistry , Cell Line, Tumor , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Dynamic Light Scattering , Gadolinium/chemistry , Humans , MCF-7 Cells , Magnetite Nanoparticles , Microscopy, Electron, Scanning , PC-3 Cells , Particle Size , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
19.
Nanomaterials (Basel) ; 10(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878168

ABSTRACT

The paper presents the results of a study of irradiation of high-energy electrons by an array of FeNi nanostructures with doses from 50 to 500 kGy. Polycrystalline nanotubes based on FeNi, the phase composition of which is a mixture of two face-centered phases, FeNi3 and FeNi, were chosen as initial samples. During the study, the dependences of the phase transformations, as well as changes in the structural parameters as a result of electronic annealing of defects, were established. Using the method of X-ray diffraction, three stages of phase transformations were established: FeNi3 ≅ FeNi → FeNi3 ≪ FeNi → FeNi. After increasing the radiation dose above 400 kGy, no further phase changes were followed, indicating the saturation of defect annealing and completion of the lattice formation process. It was found that an increase in the degree of crystallinity and density of the microstructures as a result of irradiation indicates electronic annealing of defects and a change in the phase composition. It was established that the initial microtubes, in which two phases are present, leads to the appearance of differently oriented crystallites of different sizes in the structure, which contributes to a large number of grain boundaries and also a decrease in density, and are subject to the greatest degradation of structural properties. For modified samples, the degradation rate decreases by 5 times. In the course of the study, the prospects of the use of electron irradiation with doses above 250 kGy for directed modification of FeNi microtubes and changes in structural features were established.

SELECTION OF CITATIONS
SEARCH DETAIL
...