Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-11088970

ABSTRACT

We analyze nonstationary 137Cs atmospheric activity concentration fluctuations measured near Chernobyl after the 1986 disaster and find three new results: (i) the histogram of fluctuations is well described by a log-normal distribution; (ii) there is a pronounced spectral component with period T=1yr, and (iii) the fluctuations are long-range correlated. These findings allow us to quantify two fundamental statistical properties of the data: the probability distribution and the correlation properties of the time series. We interpret our findings as evidence that the atmospheric radionuclide resuspension processes are tightly coupled to the surrounding ecosystems and to large time scale weather patterns.

3.
Risk Anal ; 12(1): 73-82, 1992 Mar.
Article in English | MEDLINE | ID: mdl-1574618

ABSTRACT

In this paper we describe a simulation, by Monte Carlo methods, of the results of rodent carcinogenicity bioassays. Our aim is to study how the observed correlation between carcinogenic potency (beta or 1n2/TD50) and maximum tolerated dose (MTD) arises, and whether the existence of this correlation leads to an artificial correlation between carcinogenic potencies in rats and mice. The validity of the bioassay results depends upon, among other things, certain biases in the experimental design of the bioassays. These include selection of chemicals for bioassay and details of the experimental protocol, including dose levels. We use as variables in our simulation the following factors: (1) dose group size, (2) number of dose groups, (3) tumor rate in the control (zero-dose) group, (4) distribution of the MTD values of the group of chemicals as specified by the mean and standard deviation, (5) the degree of correlation between beta and the MTD, as given by the standard deviation of the random error term in the linear regression of log beta on log (1/MTD), and (6) an upper limit on the number of animals with tumors. Monte Carlo simulation can show whether the information present in the existing rodent bioassay database is sufficient to reject the validity of the proposed interspecies correlations at a given level of stringency. We hope that such analysis will be useful for future bioassay design, and more importantly, for discussion of the whole NCI/NTP program.


Subject(s)
Carcinogenicity Tests/statistics & numerical data , Monte Carlo Method , Animals , Biological Assay/statistics & numerical data , Computer Simulation , Databases, Factual , Female , Humans , Mice , Rats , Risk , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...