Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Opin Ther Targets ; 23(8): 695-710, 2019 08.
Article in English | MEDLINE | ID: mdl-31304807

ABSTRACT

Introduction: The Notch pathway is involved in determining cell fate during development and postnatally in continuously renewing tissues, such as the endothelium, the epithelium, and in the stem cells pool. The dysregulation of the Notch pathway is one of the causes of limited response, or resistance, to available cancer treatments and novel therapeutic strategies based on Notch inhibition are being investigated in preclinical and clinical studies in oncology. A large body of evidence now shows that the dysregulation of the Notch pathway is also involved in the pathophysiology of cardiovascular diseases (CVDs). Areas covered: This review discusses the molecular mechanisms involving Notch which underlie heart failure, aortic valve calcification, and aortic aneurysm. Expert opinion: Despite the existence of preventive, pharmacological and surgical interventions approaches, CVDs are the first causes of mortality worldwide. The Notch pathway is becoming increasingly recognized as being involved in heart failure, aortic aneurysm and aortic valve calcification, which are among the most common global causes of mortality due to CVDs. As already shown in cancer, the dissection of the biological processes and molecular mechanisms involving Notch should pave the way for new strategies to prevent and cure these diseases.


Subject(s)
Aortic Aneurysm/therapy , Aortic Valve Stenosis/therapy , Aortic Valve/pathology , Calcinosis/therapy , Heart Failure/therapy , Animals , Aortic Aneurysm/mortality , Aortic Aneurysm/physiopathology , Aortic Valve/physiopathology , Aortic Valve Stenosis/mortality , Aortic Valve Stenosis/physiopathology , Calcinosis/mortality , Calcinosis/physiopathology , Heart Failure/mortality , Heart Failure/physiopathology , Humans , Receptors, Notch/metabolism
2.
PLoS One ; 11(9): e0163362, 2016.
Article in English | MEDLINE | ID: mdl-27662471

ABSTRACT

BACKGROUND: Cardiomyopathies represent a rare group of disorders often of genetic origin. While approximately 50% of genetic causes are known for other types of cardiomyopathies, the genetic spectrum of restrictive cardiomyopathy (RCM) is largely unknown. The aim of the present study was to identify the genetic background of idiopathic RCM and to compile the obtained genetic variants to the novel signalling pathways using in silico protein network analysis. PATIENTS AND METHODS: We used Illumina MiSeq setup to screen for 108 cardiomyopathy and arrhythmia-associated genes in 24 patients with idiopathic RCM. Pathogenicity of genetic variants was classified according to American College of Medical Genetics and Genomics classification. RESULTS: Pathogenic and likely-pathogenic variants were detected in 13 of 24 patients resulting in an overall genotype-positive rate of 54%. Half of the genotype-positive patients carried a combination of pathogenic, likely-pathogenic variants and variants of unknown significance. The most frequent combination included mutations in sarcomeric and cytoskeletal genes (38%). A bioinformatics approach underlined the mechanotransducing protein networks important for RCM pathogenesis. CONCLUSIONS: Multiple gene mutations were detected in half of the RCM cases, with a combination of sarcomeric and cytoskeletal gene mutations being the most common. Mutations of genes encoding sarcomeric, cytoskeletal, and Z-line-associated proteins appear to have a predominant role in the development of RCM.

3.
Cell Cycle ; 13(9): 1495-500, 2014.
Article in English | MEDLINE | ID: mdl-24626177

ABSTRACT

It is proposed that patients with heart failure may have not only myocardial dysfunction, but also a reduced regenerative capacity of stem cells. However, very little is known about bone marrow stromal cell (BMSC) characteristics in heart failure and its comorbidities (obesity and/or diabetes). We hypothesized that metabolic alterations associated with the latter will be reflected in altered expression of key genes related to angiogenesis, inflammation, and tissue remodeling in patient-derived BMSCs. We found that BMSCs of heart failure patients with lower body mass index have enhanced expression of genes involved in extracellular matrix remodeling. In particular, body mass index<30 was associated with upregulated expression of genes encoding collagen type I, proteases and protease activators (MMP2, MMP14, uPA), and regulatory molecules (CTGF, ITGß5, SMAD7, SNAIL1). In contrast, these transcript levels did not differ significantly between BMSCs from obese heart failure patients and healthy subjects. Comorbidities (including obesity and diabetes) are known to play role in heart failure progression rate and outcome of the disease. We thus suggest that key molecular targets identified in this study should become the target of the subsequent focused studies. In the future, these targets may find some use in the clinical setting.


Subject(s)
Heart Failure/metabolism , Mesenchymal Stem Cells/metabolism , Adult , Case-Control Studies , Female , Gene Expression Regulation , Heart Failure/pathology , Humans , Male , Middle Aged , Primary Cell Culture , Transcription, Genetic
4.
J Cachexia Sarcopenia Muscle ; 1(2): 187-194, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21475696

ABSTRACT

BACKGROUND: Chronic heart failure (CHF) is increasing in prevalence. Patients with CHF usually have co-morbid conditions, but these have been subjected to little research and consequently there is a paucity of guidance on how to manage them. Obesity and diabetes mellitus are common antecedents of CHF and often complicate management and influence outcome. Cachexia is an ominous and often missed sign in patients with CHF. METHODS: This manuscript describes the rationale and the design of Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF), a prospective, multicentre, multinational, longitudinal, pathophysiological evaluation study, which is being conducted in 11 centres across six countries in the European Union and in Russia. We aim to recruit >1,600 patients with CHF due to various common aetiologies, irrespective of left ventricular ejection fraction, and with or without co-morbidities at study entry. In addition, >300 patients with type 2 diabetes mellitus without CHF and >150 healthy subjects will serve as control groups. Participants will be systematically investigated at annual intervals for up to 48 months. Additional investigations focusing on cellular and subcellular mechanisms, adipose and skeletal muscle tissue, and in endothelial progenitor cells will be performed in selected subgroups. CONCLUSIONS: SICA-HF will provide insights into common co-morbidities in CHF with a specific emphasis on diabetes mellitus and body mass. This will provide a more thorough pathophysiological understanding of the complexity of CHF that will help develop therapies tailored to manage specific co-morbidities.

SELECTION OF CITATIONS
SEARCH DETAIL
...