Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 23(17): 8866-75, 2007 Aug 14.
Article in English | MEDLINE | ID: mdl-17636994

ABSTRACT

We report the formation and characterization of self-assembled monolayers (SAMs) derived from the adsorption of 4-mercaptophenylboronic acid (MPBA) on gold. For comparison, SAMs derived from the adsorption of thiophenol (TP), 4-mercaptophenol (MP), and 4-mercaptobenzoic acid (MBA) were also examined. The structure and properties of the SAMs were evaluated by ellipsometry, contact-angle goniometry, polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). Specifically, ellipsometry was used to assess the formation of monolayer films, and contact angle measurements were used to determine the surface hydrophilicity and homogeneity. Separately, PM-IRRAS was used to evaluate the molecular composition and orientation as well as the intermolecular hydrogen bonding within the SAMs. Finally, XPS was used to evaluate the film composition and surface coverage (i.e., packing density), which was observed to increase in the following order: TP < MP < MPBA < MBA. A rationalization for the observed packing differences is presented. The XPS data indicate further that ultrahigh vacuum conditions induce the partial dehydration of MPBA SAMs with the concomitant formation of surface boronic anhydride species. Overall, the analytical data collectively show that the MPBA moieties in the SAMs exist in the acid form rather than the anhydride form under ambient laboratory conditions. Furthermore, stability studies find that MPBA SAMs are surprisingly labile in basic solution, where the terminal B-C bonds are cleaved by the attack of hydroxide ion and strongly basic amine nucleophiles. The unanticipated lability observed here should be considered by those wishing to use MPBA moieties in carbohydrate-sensing applications.


Subject(s)
Benzoates/chemistry , Boronic Acids/chemistry , Gold/chemistry , Phenols/chemistry , Sulfhydryl Compounds/chemistry , Esters/chemistry , Molecular Structure , Spectrophotometry , Surface Properties
2.
Langmuir ; 21(3): 933-6, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15667170

ABSTRACT

Compositionally mixed, self-assembled monolayers (SAMs) derived from 16,16,16-trifluorohexadecanethiol and a normal alkanethiol, either hexadecanethiol or pentadecanethiol, were formed on Au(111) substrates. The relative composition of the films was determined using X-ray photoelectron spectroscopy and was found to approximately equal the equimolar composition of the isooctane solution from which they were formed. The frictional properties of the mixed films were measured on the nanometer scale using atomic force microscopy and were observed to decrease when the chain length of the CH(3)-terminated component was shortened by one methylene unit (i.e., when hexadecanethiol was replaced by pentadecanethiol). For comparison, the frictional properties of a mixed-chain-length CH(3)-terminated SAM derived from hexadecanethiol and pentadecanethiol in a 1:1 ratio was also examined. In contrast to the mixed CF(3)/CH(3) system, the latter mixed-chain-length system exhibited relatively higher friction when compared to single-component SAMs derived solely from either hexadecanethiol or pentadecanethiol. For both types of mixed films, the change in frictional properties that occurs as a result of modifying the position of neighboring terminal groups with respect to the surface plane is discussed in terms of the influence of local packing environments on interfacial energy dissipation (friction).

SELECTION OF CITATIONS
SEARCH DETAIL
...