Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Radiol Prot ; 26(4): 375-87, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17146122

ABSTRACT

In this paper a Monte Carlo model for describing the atmospheric dispersion of radionuclides (represented by Lagrangian particles/neutral tracers) continuously released into a stable planetary boundary layer is presented. The effect of variation in release height and wind directional shear on plume dispersion is studied. The resultant plume concentration and dose rate at the ground is also calculated. The turbulent atmospheric parameters, like vertical profiles of fluctuating wind velocity components and eddy lifetime, were calculated using empirical relations for a stable atmosphere. The horizontal and vertical dispersion coefficients calculated by a numerical Lagrangian model are compared with the original and modified Pasquill-Gifford and Briggs empirical sigmas. The comparison shows that the Monte Carlo model can successfully predict dispersion in a stable atmosphere using the empirical turbulent parameters. The predicted ground concentration and dose rate contours indicate a significant increase in the affected area when wind shear is accounted for in the calculations.


Subject(s)
Air Pollutants, Radioactive/analysis , Atmosphere/analysis , Models, Theoretical , Radioisotopes/analysis , Rheology/methods , Wind , Computer Simulation , Diffusion , Monte Carlo Method , Planets , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...