Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(22): e2220041120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216505

ABSTRACT

Histone modifications coupled to transcription elongation play important roles in regulating the accuracy and efficiency of gene expression. The monoubiquitylation of a conserved lysine in H2B (K123 in Saccharomyces cerevisiae; K120 in humans) occurs cotranscriptionally and is required for initiating a histone modification cascade on active genes. H2BK123 ubiquitylation (H2BK123ub) requires the RNA polymerase II (RNAPII)-associated Paf1 transcription elongation complex (Paf1C). Through its histone modification domain (HMD), the Rtf1 subunit of Paf1C directly interacts with the ubiquitin conjugase Rad6, leading to the stimulation of H2BK123ub in vivo and in vitro. To understand the molecular mechanisms that target Rad6 to its histone substrate, we identified the site of interaction for the HMD on Rad6. Using in vitro cross-linking followed by mass spectrometry, we localized the primary contact surface for the HMD to the highly conserved N-terminal helix of Rad6. Using a combination of genetic, biochemical, and in vivo protein cross-linking experiments, we characterized separation-of-function mutations in S. cerevisiae RAD6 that greatly impair the Rad6-HMD interaction and H2BK123 ubiquitylation but not other Rad6 functions. By employing RNA-sequencing as a sensitive approach for comparing mutant phenotypes, we show that mutating either side of the proposed Rad6-HMD interface yields strikingly similar transcriptome profiles that extensively overlap with those of a mutant that lacks the site of ubiquitylation in H2B. Our results fit a model in which a specific interface between a transcription elongation factor and a ubiquitin conjugase guides substrate selection toward a highly conserved chromatin target during active gene expression.


Subject(s)
Histones , Nuclear Proteins , Saccharomyces cerevisiae Proteins , TATA-Box Binding Protein , Ubiquitin-Conjugating Enzymes , gamma-Glutamyl Hydrolase , Histones/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism
2.
Plant Cell ; 31(3): 715-733, 2019 03.
Article in English | MEDLINE | ID: mdl-30760564

ABSTRACT

The last eukaryotic common ancestor had two classes of introns that are still found in most eukaryotic lineages. Common U2-type and rare U12-type introns are spliced by the major and minor spliceosomes, respectively. Relatively few splicing factors have been shown to be specific to the minor spliceosome. We found that the maize (Zea mays) RNA binding motif protein 48 (RBM48) is a U12 splicing factor that functions to promote cell differentiation and repress cell proliferation. RBM48 is coselected with the U12 splicing factor, zinc finger CCCH-type, RNA binding motif, and Ser/Arg rich 2/Rough endosperm 3 (RGH3). Protein-protein interactions between RBM48, RGH3, and U2 Auxiliary Factor (U2AF) subunits suggest major and minor spliceosome factors required for intron recognition form complexes with RBM48. Human RBM48 interacts with armadillo repeat containing 7 (ARMC7). Maize RBM48 and ARMC7 have a conserved protein-protein interaction. These data predict that RBM48 is likely to function in U12 splicing throughout eukaryotes and that U12 splicing promotes endosperm cell differentiation in maize.


Subject(s)
Plant Proteins/metabolism , RNA Splicing , RNA, Small Nuclear/metabolism , Spliceosomes , Zea mays/genetics , Cell Differentiation , Endosperm/genetics , Endosperm/physiology , Introns/genetics , Phenotype , Plant Proteins/genetics , RNA, Small Nuclear/genetics , RNA-Binding Motifs , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Zea mays/physiology
3.
G3 (Bethesda) ; 5(8): 1703-11, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26070844

ABSTRACT

The propensity to capture and mobilize gene fragments by the highly abundant Helitron family of transposable elements likely impacts the evolution of genes in Zea mays. These elements provide a substrate for natural selection by giving birth to chimeric transcripts by intertwining exons of disparate genes. They also capture flanking exons by read-through transcription. Here, we describe the expression of selected Helitrons in different maize inbred lines. We recently reported that these Helitrons produce multiple isoforms of transcripts in inbred B73 via alternative splicing. Despite sharing high degrees of sequence similarity, the splicing profile of Helitrons differed among various maize inbred lines. The comparison of Helitron sequences identified unique polymorphisms in inbred B73, which potentially give rise to the alternatively spliced sites utilized by transcript isoforms. Some alterations in splicing, however, do not have obvious explanations. These observations not only add another level to the creation of transcript diversity by Helitrons among inbred lines but also provide novel insights into the cis-acting elements governing splice-site selection during pre-mRNA processing.


Subject(s)
DNA Transposable Elements/genetics , RNA Precursors/metabolism , Zea mays/genetics , Alternative Splicing , Base Sequence , Genome, Plant , Molecular Sequence Data , Plant Roots/metabolism , Plant Shoots/metabolism , RNA Precursors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...