Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
2.
Bioorg Med Chem Lett ; 29(12): 1481-1486, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31014911

ABSTRACT

In continuation of our previous research towards the discovery of potent, selective and drug-like Wee1 inhibitors, 2 novel series of biaryl heterocycles were designed, synthesized and evaluated. The new biaryl cores were designed to enable structure-activity exploration of substituents at C-8 or N-8 which were used for tuning compound properties and to improve compound profiles. The lead molecule 33 demonstrated a desirable pharmacokinetic profile and potentiated the anti-proliferative activity of irinotecan in vivo when dosed orally in the human breast MX-1 xenograft model.


Subject(s)
Cell Cycle Proteins/metabolism , Heterocyclic Compounds/metabolism , Protein-Tyrosine Kinases/metabolism , Humans , Structure-Activity Relationship
3.
J Med Chem ; 61(15): 6647-6657, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30004704

ABSTRACT

IDH1 plays a critical role in a number of metabolic processes and serves as a key source of cytosolic NADPH under conditions of cellular stress. However, few inhibitors of wild-type IDH1 have been reported. Here we present the discovery and biochemical characterization of two novel inhibitors of wild-type IDH1. In addition, we present the first ligand-bound crystallographic characterization of these novel small molecule IDH1 binding pockets. Importantly, the NADPH competitive α,ß-unsaturated enone 1 makes a unique covalent linkage through active site H315. As few small molecules have been shown to covalently react with histidine residues, these data support the potential utility of an underutilized strategy for reversible covalent small molecule design.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Histidine , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/chemistry , Cell Line, Tumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Ligands , Molecular Docking Simulation , Mutation , Protein Conformation , Structure-Activity Relationship
4.
PLoS One ; 10(7): e0131716, 2015.
Article in English | MEDLINE | ID: mdl-26147105

ABSTRACT

Histone methyltransferases are epigenetic regulators that modify key lysine and arginine residues on histones and are believed to play an important role in cancer development and maintenance. These epigenetic modifications are potentially reversible and as a result this class of enzymes has drawn great interest as potential therapeutic targets of small molecule inhibitors. Previous studies have suggested that the histone lysine methyltransferase G9a (EHMT2) is required to perpetuate malignant phenotypes through multiple mechanisms in a variety of cancer types. To further elucidate the enzymatic role of G9a in cancer, we describe herein the biological activities of a novel peptide-competitive histone methyltransferase inhibitor, A-366, that selectively inhibits G9a and the closely related GLP (EHMT1), but not other histone methyltransferases. A-366 has significantly less cytotoxic effects on the growth of tumor cell lines compared to other known G9a/GLP small molecule inhibitors despite equivalent cellular activity on methylation of H3K9me2. Additionally, the selectivity profile of A-366 has aided in the discovery of a potentially important role for G9a/GLP in maintenance of leukemia. Treatment of various leukemia cell lines in vitro resulted in marked differentiation and morphological changes of these tumor cell lines. Furthermore, treatment of a flank xenograft leukemia model with A-366 resulted in growth inhibition in vivo consistent with the profile of H3K9me2 reduction observed. In summary, A-366 is a novel and highly selective inhibitor of G9a/GLP that has enabled the discovery of a role for G9a/GLP enzymatic activity in the growth and differentiation status of leukemia cells.


Subject(s)
Enzyme Inhibitors/pharmacology , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Indoles/pharmacology , Leukemia/enzymology , Spiro Compounds/pharmacology , Animals , Female , Heterografts , Humans , Leukemia/genetics , Leukemia/pathology , MCF-7 Cells , Mice , Mice, SCID
5.
ACS Med Chem Lett ; 6(1): 58-62, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25589931

ABSTRACT

Aided by molecular modeling, compounds with a pyrimidine-based tricyclic scaffold were designed and confirmed to inhibit Wee1 kinase. Structure-activity studies identified key pharmacophores at the aminoaryl and halo-benzene regions responsible for binding affinity with sub-nM K i values. The potent inhibitors demonstrated sub-µM activities in both functional and mechanism-based cellular assays and also possessed desirable pharmacokinetic profiles. The lead molecule, 31, showed oral efficacy in potentiating the antiproliferative activity of irinotecan, a cytotoxic agent, in a NCI-H1299 mouse xenograft model.

6.
ACS Med Chem Lett ; 4(2): 211-5, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-24900653

ABSTRACT

To investigate the role played by the unique pre-DFG residue Val 195 of Cdc7 kinase on the potency of azaindole-chloropyridines (1), a series of novel analogues with various chloro replacements were synthesized and evaluated for their inhibitory activity against Cdc7. X-ray cocrystallization using a surrogate protein, GSK3ß, and modeling studies confirmed the azaindole motif as the hinge binder. Weaker hydrophobic interactions with Met 134 and Val 195 by certain chloro replacements (e.g., H, methyl) led to reduced Cdc7 inhibition. Meanwhile, data from other replacements (e.g., F, O) indicated that loss of such hydrophobic interaction could be compensated by enhanced hydrogen bonding to Lys 90. Our findings not only provide an in-depth understanding of the pre-DFG residue as another viable position impacting kinase inhibition, they also expand the existing knowledge of ligand-Cdc7 binding.

7.
Bioorg Med Chem Lett ; 22(24): 7615-22, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23103095

ABSTRACT

A high throughput screening (HTS) hit, 1 (Plk1 K(i)=2.2 µM) was optimized and evaluated for the enzymatic inhibition of Plk-1 kinase. Molecular modeling suggested the importance of adding a hydrophobic aromatic amine side chain in order to improve the potency by a classic kinase H-donor-acceptor binding mode. Extensive SAR studies led to the discovery of 49 (Plk1 K(i)=5 nM; EC(50)=1.05 µM), which demonstrated moderate efficacy at 100 mpk in a MiaPaCa tumor model, with no overt toxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , High-Throughput Screening Assays , Neoplasms, Experimental/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Polo-Like Kinase 1
9.
Clin Cancer Res ; 18(2): 510-23, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22128301

ABSTRACT

PURPOSE: PARP inhibitors are being developed as therapeutic agents for cancer. More than six compounds have entered clinical trials. The majority of these compounds are ß-nicotinamide adenine dinucleotide (NAD(+))-competitive inhibitors. One exception is iniparib, which has been proposed to be a noncompetitive PARP inhibitor. In this study, we compare the biologic activities of two different structural classes of NAD(+)-competitive compounds with iniparib and its C-nitroso metabolite. EXPERIMENTAL DESIGN: Two chemical series of NAD(+)-competitive PARP inhibitors, iniparib and its C-nitroso metabolite, were analyzed in enzymatic and cellular assays. Viability assays were carried out in MDA-MB-436 (BRCA1-deficient) and DLD1(-/-) (BRCA2-deficient) cells together with BRCA-proficient MDA-MB-231 and DLD1(+/+) cells. Capan-1 and B16F10 xenograft models were used to compare iniparib and veliparib in vivo. Mass spectrometry and the (3)H-labeling method were used to monitor the covalent modification of proteins. RESULTS: All NAD(+)-competitive inhibitors show robust activity in a PARP cellular assay, strongly potentiate the activity of temozolomide, and elicit robust cell killing in BRCA-deficient tumor cells in vitro and in vivo. Cell killing was associated with an induction of DNA damage. In contrast, neither iniparib nor its C-nitroso metabolite inhibited PARP enzymatic or cellular activity, potentiated temozolomide, or showed activity in a BRCA-deficient setting. We find that the nitroso metabolite of iniparib forms adducts with many cysteine-containing proteins. Furthermore, both iniparib and its nitroso metabolite form protein adducts nonspecifically in tumor cells. CONCLUSIONS: Iniparib nonselectively modifies cysteine-containing proteins in tumor cells, and the primary mechanism of action for iniparib is likely not via inhibition of PARP activity.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Cysteine/chemistry , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , BRCA2 Protein/deficiency , BRCA2 Protein/genetics , Benzamides/chemistry , Benzamides/therapeutic use , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Cell Line, Tumor , DNA Repair/drug effects , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Drug Synergism , Female , Humans , Mice , Mice, Inbred C57BL , Mice, SCID , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Temozolomide , Xenograft Model Antitumor Assays
10.
Mol Cancer Ther ; 10(12): 2340-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21914853

ABSTRACT

The ability of a cancer cell to avoid apoptosis is crucial to tumorigenesis and can also contribute to chemoresistance. The Bcl-2 family of prosurvival proteins (Bcl-2, Bcl-X(L), Bcl-w, Mcl-1, and A1) plays a key role in these processes. We previously reported the discovery of ABT-263 (navitoclax), a potent small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-w. While navitoclax exhibits single-agent activity in tumors dependent on Bcl-2 or Bcl-X(L) for survival, the expression of Mcl-1 has been shown to confer resistance to navitoclax, most notably in solid tumors. Thus, therapeutic agents that can downregulate or neutralize Mcl-1 are predicted to synergize potently with navitoclax. Here, we report the activity of navitoclax in combination with 19 clinically relevant agents across a panel of 46 human solid tumor cell lines. Navitoclax broadly enhanced the activity of multiple therapeutic agents in vitro and enhanced efficacy of both docetaxel and erlotinib in xenograft models. The ability of navitoclax to synergize with docetaxel or erlotinib corresponded to an altered sensitivity of the mitochondria toward navitoclax, which was associated with the downmodulation of Mcl-1 and/or upregulation of Bim. These data provide a rationale to interrogate these combinations clinically.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasms/drug therapy , Sulfonamides/pharmacology , Aniline Compounds/administration & dosage , Animals , Apoptosis Regulatory Proteins/antagonists & inhibitors , Drug Synergism , Female , HCT116 Cells , Hep G2 Cells , Humans , K562 Cells , Male , Mice , Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/administration & dosage , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , bcl-X Protein/antagonists & inhibitors
11.
J Biol Chem ; 286(45): 38960-8, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-21890637

ABSTRACT

The ubiquitin/proteasome pathway plays critical roles in virtually all aspects of cell biology. Enzymes of the ubiquitin pathway add (ligases) or remove (deubiquitinases) ubiquitin tags to or from their target proteins in a selective fashion. USP2a is a member of a subfamily of deubiquitinases, called ubiquitin-specific cysteine proteases (USPs). Although USP2a has been reported to be a bona fide oncogene that regulates the stability of MDM2, MDMX, and FAS, it is likely that there are other unidentified substrates for USP2a. In this study, we show that USP2a mediates mitotic progression by regulating the stability of Aurora-A. Through cell-based screening of a USP siRNA library, we discovered that knockdown of USP2a reduced the protein levels of Aurora-A. USP2a interacts with Aurora-A directly in vitro and in vivo. In addition, Aurora-A is a substrate for USP2a in vitro and in vivo. Our study provides a novel mechanism for the role of USP2a in mediating the stability of Aurora-A.


Subject(s)
Endopeptidases/metabolism , Mitosis/physiology , Protein Serine-Threonine Kinases/metabolism , Ubiquitin/metabolism , Aurora Kinases , Endopeptidases/chemistry , Endopeptidases/genetics , Enzyme Stability/physiology , Gene Knockdown Techniques , HeLa Cells , Humans , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Ubiquitin/genetics , Ubiquitin Thiolesterase
12.
Cancer Chemother Pharmacol ; 66(5): 869-80, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20099064

ABSTRACT

PURPOSE: This study was designed to test the ability of the Bcl-2 family inhibitor ABT-263 to potentiate commonly used chemotherapeutic agents and regimens in hematologic tumor models. METHODS: Models of B-cell lymphoma and multiple myeloma were tested in vitro and in vivo with ABT-263 in combination with standard chemotherapeutic regimens, including VAP, CHOP and R-CHOP, as well as single cytotoxic agents including etoposide, rituximab, bortezomib and cyclophosphamide. Alterations in Bcl-2 family member expression patterns were analyzed to define mechanisms of potentiation. RESULTS: ABT-263 was additive with etoposide, vincristine and VAP in vitro in the diffuse large B-cell lymphoma line (DLBCL) DoHH-2, while rituximab potentiated its activity in SuDHL-4. Bortezomib strongly synergized with ABT-263 in the mantle cell lymphoma line Granta 519. Treatment of DoHH-2 with etoposide was associated with an increase in Puma expression, while bortezomib upregulated Noxa expression in Granta 519. Combination of ABT-263 with cytotoxic agents demonstrated superior tumor growth inhibition and delay in multiple models versus cytotoxic therapy alone, along with significant improvements in tumor response rates. CONCLUSIONS: Inhibition of the Bcl-2 family of proteins by ABT-263 enhances the cytotoxicity of multiple chemotherapeutics in hematologic tumors and represents a promising addition to the therapeutic arsenal for treatment of these diseases.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Lymphoma, B-Cell/drug therapy , Multiple Myeloma/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Aniline Compounds/administration & dosage , Animals , Apoptosis Regulatory Proteins/genetics , Cell Line, Tumor , Drug Synergism , Humans , Lymphoma, B-Cell/pathology , Mice , Mice, SCID , Multiple Myeloma/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Sulfonamides/administration & dosage , Xenograft Model Antitumor Assays
13.
Mol Cancer Res ; 7(10): 1686-92, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19825992

ABSTRACT

Many established cancer therapies involve DNA-damaging chemotherapy or radiotherapy. Gain of DNA repair capacity of the tumor represents a common mechanism used by cancer cells to survive DNA-damaging therapy. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that is activated by DNA damage and plays a critical role in base excision repair. Inhibition of PARP represents an attractive approach for the treatment of cancer. Previously, we have described the discovery and characterization of a potent PARP inhibitor, ABT-888. ABT-888 potentiates the activity of DNA-damaging agents such as temozolomide (TMZ) in a variety of preclinical models. We report here the generation of HCT116 cells resistant to treatment with TMZ and ABT-888 (HCT116R cells). HCT116R cells exhibit decreased H2AX phosphorylation in response to treatment with TMZ and ABT-888 relative to parental HCT116 cells. Microarray and Western blot studies indicate that HCT116R cells have decreased PARP-1 and elevated Rad51 expression levels. HCT116R cells are dependent on Rad51 for proliferation and survival, as shown by inhibition of proliferation and induction of apoptosis upon treatment with Rad51 small interfering RNA. In addition, HCT116R cells are more resistant to radiation than the parental HCT116 cells. Our study suggests that cancer cells upregulate the homologous recombination DNA repair pathway to compensate for the loss of base excision repair, which may account for the observed resistance to treatment with TMZ and ABT-888.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzimidazoles/pharmacology , DNA Repair/drug effects , Dacarbazine/analogs & derivatives , Drug Resistance, Neoplasm/genetics , Recombination, Genetic/drug effects , Antineoplastic Agents, Alkylating/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Repair/genetics , Dacarbazine/pharmacology , Down-Regulation/genetics , Histones/drug effects , Histones/genetics , Histones/metabolism , Humans , Phosphorylation/drug effects , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/drug effects , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , RNA, Small Interfering , Rad51 Recombinase/drug effects , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Recombination, Genetic/genetics , Sequence Homology , Temozolomide
14.
J Med Chem ; 51(21): 6902-15, 2008 Nov 13.
Article in English | MEDLINE | ID: mdl-18841882

ABSTRACT

Overexpression of prosurvival proteins such as Bcl-2 and Bcl-X L has been correlated with tumorigenesis and resistance to chemotherapy, and thus, the development of antagonists of these proteins may provide a novel means for the treatment of cancer. We recently described the discovery of 1 (ABT-737), which binds Bcl-2, Bcl-X L, and Bcl-w with high affinity, shows robust antitumor activity in murine tumor xenograft models, but is not orally bioavailable. Herein, we report that targeted modifications at three key positions of 1 resulted in a 20-fold improvement in the pharmacokinetic/pharmacodynamic relationship (PK/PD) between oral exposure (AUC) and in vitro efficacy in human tumor cell lines (EC 50). The resulting compound, 2 (ABT-263), is orally efficacious in an established xenograft model of human small cell lung cancer, inducing complete tumor regressions in all animals. Compound 2 is currently in multiple phase 1 clinical trials in patients with small cell lung cancer and hematological malignancies.


Subject(s)
Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Administration, Oral , Animals , Cell Line , Cell Survival/drug effects , Drug Evaluation, Preclinical , Humans , Mice , Molecular Structure , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
15.
Cancer Res ; 68(9): 3421-8, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18451170

ABSTRACT

Overexpression of the prosurvival Bcl-2 family members (Bcl-2, Bcl-xL, and Mcl-1) is commonly associated with tumor maintenance, progression, and chemoresistance. We previously reported the discovery of ABT-737, a potent, small-molecule Bcl-2 family protein inhibitor. A major limitation of ABT-737 is that it is not orally bioavailable, which would limit chronic single agent therapy and flexibility to dose in combination regimens. Here we report the biological properties of ABT-263, a potent, orally bioavailable Bad-like BH3 mimetic (K(i)'s of <1 nmol/L for Bcl-2, Bcl-xL, and Bcl-w). The oral bioavailability of ABT-263 in preclinical animal models is 20% to 50%, depending on formulation. ABT-263 disrupts Bcl-2/Bcl-xL interactions with pro-death proteins (e.g., Bim), leading to the initiation of apoptosis within 2 hours posttreatment. In human tumor cells, ABT-263 induces Bax translocation, cytochrome c release, and subsequent apoptosis. Oral administration of ABT-263 alone induces complete tumor regressions in xenograft models of small-cell lung cancer and acute lymphoblastic leukemia. In xenograft models of aggressive B-cell lymphoma and multiple myeloma where ABT-263 exhibits modest or no single agent activity, it significantly enhances the efficacy of clinically relevant therapeutic regimens. These data provide the rationale for clinical trials evaluating ABT-263 in small-cell lung cancer and B-cell malignancies. The oral efficacy of ABT-263 should provide dosing flexibility to maximize clinical utility both as a single agent and in combination regimens.


Subject(s)
Aniline Compounds/therapeutic use , Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/therapeutic use , Administration, Oral , Aniline Compounds/administration & dosage , Aniline Compounds/adverse effects , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal, Murine-Derived , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Small Cell/drug therapy , Carcinoma, Small Cell/pathology , Cells, Cultured , Drug Synergism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/pathology , Mice , Mice, Knockout , Mice, SCID , Models, Biological , Neoplasms/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Rituximab , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Thrombocytopenia/chemically induced , Treatment Outcome , Tumor Burden , Xenograft Model Antitumor Assays
16.
J Med Chem ; 50(4): 641-62, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17256834

ABSTRACT

Overexpression of the antiapototic proteins Bcl-2 and Bcl-xL provides a common mechanism through which cancer cells gain a survival advantage and become resistant to conventional chemotherapy. Inhibition of these prosurvival proteins is an attractive strategy for cancer therapy. We recently described the discovery of a selective Bcl-xL antagonist that potentiates the antitumor activity of chemotherapy and radiation. Here we describe the use of structure-guided design to exploit a deep hydrophobic binding pocket on the surface of these proteins to develop the first dual, subnanomolar inhibitors of Bcl-xL and Bcl-2. This study culminated in the identification of 2, which exhibited EC50 values of 8 nM and 30 nM in Bcl-2 and Bcl-xL dependent cells, respectively. Compound 2 demonstrated single agent efficacy against human follicular lymphoma cell lines that overexpress Bcl-2, and efficacy in a murine xenograft model of lymphoma when given both as a single agent and in combination with etoposide.


Subject(s)
Antineoplastic Agents/chemical synthesis , Biphenyl Compounds/chemical synthesis , Nitrophenols/chemical synthesis , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Lymphoma , Mice , Mice, SCID , Models, Molecular , Nitrophenols/chemistry , Nitrophenols/pharmacology , Piperazines/chemical synthesis , Piperazines/chemistry , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-2/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology , Transplantation, Heterologous , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/chemistry
17.
J Med Chem ; 49(3): 1165-81, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16451081

ABSTRACT

Development of a rationally designed potentiator of cancer chemotherapy, via inhibition of Bcl-X(L) function, is described. Lead compounds generated by NMR screening and directed parallel synthesis displayed sub-microM binding but were strongly deactivated in the presence of serum. The dominant component of serum deactivation was identified as domain III of human serum albumin (HSA); NMR solution structures of inhibitors bound to both Bcl-X(L) and HSA domain III indicated two potential optimization sites for separation of affinities. Modifications at both sites resulted in compounds with improved Bcl-X(L) binding and greatly increased activity in the presence of human serum, culminating in 73R, which bound to Bcl-X(L) with a K(i) of 0.8 nM. In a cellular assay 73R reversed the protection afforded by Bcl-X(L) overexpression against cytokine deprivation in FL5.12 cells with an EC(50) of 0.47 microM. 73R showed little effect on the viability of the human non small cell lung cancer cell line A549. However, consistent with the proposed mechanism, 73R potentiated the activity of paclitaxel and UV irradiation in vitro and potentiated the antitumor efficacy of paclitaxel in a mouse xenograft model.


Subject(s)
Aniline Compounds/chemical synthesis , Antineoplastic Agents/chemical synthesis , Piperidines/chemical synthesis , Sulfonamides/chemical synthesis , bcl-X Protein/antagonists & inhibitors , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Drug Screening Assays, Antitumor , Drug Synergism , Fluorescence Polarization , Humans , Magnetic Resonance Spectroscopy , Mice , Mice, SCID , Paclitaxel/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Protein Binding , Protein Structure, Tertiary , Serum , Serum Albumin/chemistry , Stereoisomerism , Sulfonamides/chemistry , Sulfonamides/pharmacology , Transplantation, Heterologous , Ultraviolet Rays
18.
Neoplasia ; 7(11): 992-1000, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16331885

ABSTRACT

Akt is a serine/threonine kinase that transduces survival signals from survival/growth factors. Deregulation and signal imbalance in cancer cells make them prone to apoptosis. Upregulation or activation of Akt to aid the survival of cancer cells is a common theme in human malignancies. We have developed small-molecule Akt inhibitors that are potent and specific. These Akt inhibitors can inhibit Akt activity and block phosphorylation by Akt on multiple downstream targets in cells. Synergy in apoptosis induction was observed when Akt inhibitors were combined with doxorubicin or camptothecin. Akt inhibitor-induced enhancement of topoisomerase inhibitor cytotoxicity was also evident in long-term cell survival assay. Synergy with paclitaxel in apoptosis induction was evident in cells pretreated with paclitaxel, and enhancement of tumor delay by paclitaxel was demonstrated through cotreatment with Akt inhibitor Compound A (A-443654). Combination with other classes of chemotherapeutic agents did not yield any enhancement of cytotoxicity. These findings provide important guidance in selecting appropriate classes of chemotherapeutic agents for combination with Akt inhibitors in cancer treatment.


Subject(s)
Enzyme Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Apoptosis/drug effects , Caspases/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/pharmacology , Drug Design , Enzyme Inhibitors/chemistry , Humans , Indazoles/pharmacology , Indoles/pharmacology , Kinetics , Paclitaxel/pharmacology
19.
Mol Cancer Ther ; 4(6): 977-86, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15956255

ABSTRACT

The Akt kinases are central nodes in signal transduction pathways that are important for cellular transformation and tumor progression. We report the development of a series of potent and selective indazole-pyridine based Akt inhibitors. These compounds, exemplified by A-443654 (K(i) = 160 pmol/L versus Akt1), inhibit Akt-dependent signal transduction in cells and in vivo in a dose-responsive manner. In vivo, the Akt inhibitors slow the progression of tumors when used as monotherapy or in combination with paclitaxel or rapamycin. Tumor growth inhibition was observed during the dosing interval, and the tumors regrew when compound administration was ceased. The therapeutic window for these compounds is narrow. Efficacy is achieved at doses approximately 2-fold lower than the maximally tolerated doses. Consistent with data from knockout animals, the Akt inhibitors induce an increase in insulin secretion. They also induce a reactive increase in Akt phosphorylation. Other toxicities observed, including malaise and weight loss, are consistent with abnormalities in glucose metabolism. These data show that direct Akt inhibition may be useful in cancer therapy, but significant metabolic toxicities are likely dose limiting.


Subject(s)
Indazoles/pharmacology , Indoles/pharmacology , Neoplasms/enzymology , Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Disease Progression , Humans , Indazoles/chemistry , Indazoles/therapeutic use , Indoles/chemistry , Indoles/therapeutic use , Mice , Mice, SCID , Models, Molecular , Neoplasms/drug therapy , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Pyridines/chemistry , Pyridines/pharmacology , Sensitivity and Specificity , Substrate Specificity
20.
Nature ; 435(7042): 677-81, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-15902208

ABSTRACT

Proteins in the Bcl-2 family are central regulators of programmed cell death, and members that inhibit apoptosis, such as Bcl-X(L) and Bcl-2, are overexpressed in many cancers and contribute to tumour initiation, progression and resistance to therapy. Bcl-X(L) expression correlates with chemo-resistance of tumour cell lines, and reductions in Bcl-2 increase sensitivity to anticancer drugs and enhance in vivo survival. The development of inhibitors of these proteins as potential anti-cancer therapeutics has been previously explored, but obtaining potent small-molecule inhibitors has proved difficult owing to the necessity of targeting a protein-protein interaction. Here, using nuclear magnetic resonance (NMR)-based screening, parallel synthesis and structure-based design, we have discovered ABT-737, a small-molecule inhibitor of the anti-apoptotic proteins Bcl-2, Bcl-X(L) and Bcl-w, with an affinity two to three orders of magnitude more potent than previously reported compounds. Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation. ABT-737 exhibits single-agent-mechanism-based killing of cells from lymphoma and small-cell lung carcinoma lines, as well as primary patient-derived cells, and in animal models, ABT-737 improves survival, causes regression of established tumours, and produces cures in a high percentage of the mice.


Subject(s)
Antineoplastic Agents/therapeutic use , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/classification , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/chemistry , Carcinoma, Small Cell/drug therapy , Carcinoma, Small Cell/pathology , Cell Line, Tumor , Cytochromes c/metabolism , Disease Models, Animal , Drug Synergism , Humans , Lymphoma/drug therapy , Lymphoma/pathology , Magnetic Resonance Spectroscopy , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Models, Molecular , Nitrophenols , Paclitaxel/pharmacology , Piperazines , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship , Sulfonamides , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...