Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 280(5367): 1250-3, 1998 May 22.
Article in English | MEDLINE | ID: mdl-9596575

ABSTRACT

Analyses of pelagic limestones indicate that the flux of extraterrestrial helium-3 to Earth was increased for a 2.5-million year (My) period in the late Eocene. The enhancement began approximately 1 My before and ended approximately 1.5 My after the major impact events that produced the large Popigai and Chesapeake Bay craters approximately 36 million years ago. The correlation between increased concentrations of helium-3, a tracer of fine-grained interplanetary dust, and large impacts indicates that the abundance of Earth-crossing objects and dustiness in the inner solar system were simultaneously but only briefly enhanced. These observations provide evidence for a comet shower triggered by an impulsive perturbation of the Oort cloud.


Subject(s)
Earth, Planet , Geologic Sediments/chemistry , Meteoroids , Cosmic Dust , Evolution, Planetary , Helium , Isotopes
2.
Science ; 263(5148): 787-91, 1994 Feb 11.
Article in English | MEDLINE | ID: mdl-17770832

ABSTRACT

The Hubble Space Telescope observed the fragmented comet P/Shoemaker-Levy 9 (1993e) (P indicates that it is a periodic comet) on 1 July 1993. Approximately 20 individual nuclei and their comae were observed in images taken with the Planetary Camera. After subtraction of the comae light, the 11 brightest nuclei have magnitudes between approximately 23.7 and 24.8. Assuming that the geometric albedo is 0.04, these magnitudes imply that the nuclear diameters are in the range approximately 2.5 to 4.3 kilometers. If the density of each nucleus is 1 gram per cubic centimeter, the total energy deposited by the impact of these 11 nuclei into Jupiter's atmosphere next July will be approximately 4 x 10(30) ergs ( approximately 10(8) megatons of TNT). This latter number should be regarded as an upper limit because the nuclear magnitudes probably contain a small residual coma contribution. The Faint Object Spectrograph was used to search for fluorescence from OH, which is usually an excellent indicator of cometary activity. No OH emission was detected, and this can be translated into an upper limit on the water production rate of approximately 2 x 10(27) molecules per second.

SELECTION OF CITATIONS
SEARCH DETAIL
...