Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Nutr ; 151(12): 3617-3627, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34522956

ABSTRACT

BACKGROUND: Adverse life experiences are a major risk factor for anorexia nervosa (AN). Eating-provoked anxiousness associated with AN is postulated to be due to food-related exaggerated serotonin activity in the brain and imbalances of monoamine neurotransmitters. OBJECTIVES: Using a rodent model of stress-induced hypophagia, we investigated if stress exposure augments food-related serotonin turnover and imbalances in measures of brain serotonin and dopamine activity in manners consistent with anxiousness toward food and restricted eating. METHODS: Adult male F344 rats were conditioned to associate an audio cue with daily food over 2 weeks, after which half of the rats were exposed to a single episode of tail shocks (stress) or left undisturbed (nonstressed). All rats were killed 48 h later, during a control period, the food-associated cue, or a period of food access. Serotonin, dopamine, and norepinephrine, as well as metabolite concentrations, were assessed across brain regions comprising reward, emotion, and feeding circuits relevant to AN in acutely stressed and nonstressed rats using HPLC. Statistical significance level was 5%. RESULTS: Stress-induced rat hypophagia paralleled an augmented serotonin turnover in response to the food-associated cue in the hypothalamus and hippocampus, as well as food access in the hypothalamus and cortical areas (all P < 0.05). Stress exposure increased the ratio of serotonin to dopamine metabolites across several brain areas, but the magnitude of this imbalance was further augmented during the food-associated cue and food access in the brainstem, hippocampus, and cortical areas (all P < 0.05). Finally, stress lowered norepinephrine concentrations by 18% in the hypothalamus (P < 0.05). CONCLUSIONS: The observed stress-induced changes to monoamine profiles in rats could have key implications for physiological states that contribute to restricted eating and may hold relevance for the development of AN precipitated by adverse life experiences.


Subject(s)
Anorexia , Serotonin , Animals , Anorexia/etiology , Brain , Dopamine , Male , Norepinephrine , Rats , Rats, Inbred F344
3.
Alcohol Clin Exp Res ; 45(5): 996-1012, 2021 05.
Article in English | MEDLINE | ID: mdl-33704774

ABSTRACT

BACKGROUND: Altered monoamine (i.e., serotonin, dopamine, and norepinephrine) activity following episodes of alcohol abuse plays key roles not only in the motivation to ingest ethanol, but also physiological dysfunction related to its misuse. Although monoamine activity is essential for physiological processes that require coordinated communication across the gut-brain axis (GBA), relatively little is known about how alcohol misuse may affect monoamine levels across the GBA. Therefore, we evaluated monoamine activity across the mouse gut and brain following episodes of binge-patterned ethanol drinking. METHODS: Monoamine and select metabolite neurochemical concentrations were analyzed by ultra-high-performance liquid chromatography in gut and brain regions of female and male C57BL/6J mice following "Drinking in the Dark" (DID), a binge-patterned ethanol ingestion paradigm. RESULTS: First, we found that alcohol access had an overall small effect on gut monoamine-related neurochemical concentrations, primarily influencing dopamine activity. Second, neurochemical patterns between the small intestine and the striatum were correlated, adding to recent evidence of modulatory activity between these areas. Third, although alcohol access robustly influenced activity in brain areas in the mesolimbic dopamine system, binge exposure also influenced monoaminergic activity in the hypothalamic region. Finally, sex differences were observed in the concentrations of neurochemicals within the gut, which was particularly pronounced in the small intestine. CONCLUSION: Together, these data provide insights into the influence of alcohol abuse and biological sex on monoamine-related neurochemical changes across the GBA, which could have important implications for GBA function and dysfunction.


Subject(s)
Binge Drinking/metabolism , Brain-Gut Axis/drug effects , Brain/drug effects , Central Nervous System Depressants/pharmacology , Dopamine/metabolism , Ethanol/pharmacology , Intestine, Small/drug effects , Norepinephrine/metabolism , Serotonin/metabolism , Animals , Brain/metabolism , Cecum/drug effects , Cecum/metabolism , Chromatography, High Pressure Liquid , Female , Hypothalamus/drug effects , Hypothalamus/metabolism , Intestine, Small/metabolism , Limbic System/drug effects , Limbic System/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Neostriatum/drug effects , Neostriatum/metabolism , Sex Factors
4.
Front Behav Neurosci ; 15: 639790, 2021.
Article in English | MEDLINE | ID: mdl-33716684

ABSTRACT

Monoamine neurotransmitter activity in brain reward, limbic, and motor areas play key roles in the motivation to misuse alcohol and can become modified by exercise in a manner that may affect alcohol craving. This study investigated the influence of daily moderate physical activity on monoamine-related neurochemical concentrations across the mouse brain in response to high volume ethanol ingestion. Adult female C57BL/6J mice were housed with or without 2.5 h of daily access to running wheels for 30 days. On the last 5 days, mice participated in the voluntary binge-like ethanol drinking procedure, "Drinking in the dark" (DID). Mice were sampled immediately following the final episode of DID. Monoamine-related neurochemical concentrations were measured across brain regions comprising reward, limbic, and motor circuits using ultra High-Performance Liquid Chromatography (UHPLC). The results suggest that physical activity status did not influence ethanol ingestion during DID. Moreover, daily running wheel access only mildly influenced alcohol-related norepinephrine concentrations in the hypothalamus and prefrontal cortex, as well as serotonin turnover in the hippocampus. However, access to alcohol during DID eliminated wheel running-related decreases of norepinephrine, serotonin, and 5-HIAA content in the hypothalamus, but also to a lesser extent for norepinephrine in the hippocampus and caudal cortical areas. Finally, alcohol access increased serotonin and dopamine-related neurochemical turnover in the striatum and brainstem areas, regardless of physical activity status. Together, these data provide a relatively thorough assessment of monoamine-related neurochemical levels across the brain in response to voluntary binge-patterned ethanol drinking, but also adds to a growing body of research questioning the utility of moderate physical activity as an intervention to curb alcohol abuse.

SELECTION OF CITATIONS
SEARCH DETAIL
...