Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891915

ABSTRACT

Functional foods enriched with plant polyphenol anthocyanins attract particular attention due to their health-promoting properties, including antitumor activity. We evaluated the effects of a grain diet rich in anthocyanins in a mouse model of Lewis lung carcinoma. Mice of the C57BL/6 strain were fed with wheat of near-isogenic lines differing in the anthocyanin content for four months prior to tumor transplantation. Although a significant decrease in the size of the tumor and the number of metastases in the lungs was revealed in the groups with both types of grain diet, the highest percentage of animals without metastases and with attenuated cell proliferation in the primary tumor were observed in the mice with the anthocyanin-rich diet. Both grain diets reduced the body weight gain and spleen weight index. The antitumor effects of the grain diets were associated with the activation of different mechanisms: immune response of the allergic type with augmented interleukin(IL)-9 and eotaxin serum levels in mice fed with control grain vs. inhibition of the IL-6/LIF system accompanied by a decrease in the tumor-associated M2 macrophage marker arginase 1 gene mRNA levels and enhanced autophagy in the tumor evaluated by the mRNA levels of Beclin 1 gene. Thus, anthocyanin-rich wheat is suggested as a promising source of functional nutrition with confirmed in vivo antitumor activity.


Subject(s)
Anthocyanins , Carcinoma, Lewis Lung , Mice, Inbred C57BL , Animals , Anthocyanins/pharmacology , Carcinoma, Lewis Lung/diet therapy , Carcinoma, Lewis Lung/pathology , Carcinoma, Lewis Lung/metabolism , Mice , Disease Models, Animal , Diet , Cell Proliferation/drug effects , Lung Neoplasms/pathology , Lung Neoplasms/diet therapy , Lung Neoplasms/metabolism , Edible Grain , Antineoplastic Agents/pharmacology , Triticum/chemistry
2.
Front Plant Sci ; 14: 1320770, 2023.
Article in English | MEDLINE | ID: mdl-38259950

ABSTRACT

Polyphenol oxidase (PPO) is an oxidoreductase. In damaged plant tissues, it catalyzes enzymatic browning by oxidizing o-diphenols to highly reactive o-quinones, which polymerize producing heterogeneous dark polymer melanin. In intact tissues, functions of PPO are not well understood. The aim of the study was to investigate the barley PPO gene family and to reveal the possible involvement of Ppo genes in melanization of barley grain, which is controlled by the Blp1 gene. Based on known barley Ppo genes on chromosome 2H (Ppo1 and Ppo2), two additional genes-Ppo3 and Ppo4-were found on chromosomes 3H and 4H, respectively. These genes have one and two exons, respectively, contain a conserved tyrosinase domain and are thought to be functional. Comparative transcriptional analyzes of the genes in samples of developing grains (combined hulls and pericarp tissues) were conducted in two barley lines differing by melanin pigmentation. The genes were found to be transcribed with increasing intensity (while grains mature) independently from the grain color, except for Ppo2, which is transcribed only in black-grained line i:BwBlp1 accumulating melanin in grains. Analysis of this gene's expression in detached hulls and pericarps showed its elevated transcription in both tissues in comparison with yellow ones, while it was significantly higher in hulls than in pericarp. Segregation analysis in two F2 populations obtained based on barley genotypes carrying dominant Blp1 and recessive ppo1 (I) and dominant Blp1 and recessive ppo1 and ppo2 (II) was carried out. In population I, only two phenotypic classes corresponding to parental black and white ones were observed; the segregation ratio was 3 black to 1 white, corresponding to monogenic. In population II, aside from descendants with black and white grains, hybrids with a gray phenotype - light hulls and dark pericarp - were observed; the segregation ratio was 9 black to 3 gray to 4 white, corresponding to the epistatic interaction of two genes. Most hybrids with the gray phenotype carry dominant Blp1 and a homozygous recessive allele of Ppo2. Based on transcription and segregation assays one may conclude involvement of Ppo2 but not Ppo1 in melanin formation in barley hulls.

3.
Front Plant Sci ; 13: 923717, 2022.
Article in English | MEDLINE | ID: mdl-35898231

ABSTRACT

Barley (Hordeum vulgare L.) grain pigmentation is caused by two types of phenolic compounds: anthocyanins (which are flavonoids) give a blue or purple color, and melanins (which are products of enzymatic oxidation and polymerization of phenolic compounds) give a black or brown color. Genes Ant1 and Ant2 determine the synthesis of purple anthocyanins in the grain pericarp, whereas melanins are formed under the control of the Blp1 gene in hulls and pericarp tissues. Unlike anthocyanin synthesis, melanin synthesis is poorly understood. The objective of the current work was to reveal features of the phenylpropanoid biosynthesis pathway functioning in melanin-accumulating barley grains. For this purpose, comparative transcriptomic and metabolomic analyses of three barley near-isogenic lines accumulating anthocyanins, melanins, or both in the grain, were performed. A comparative analysis of mRNA libraries constructed for three stages of spike development (booting, late milk, and early dough) showed transcriptional activation of genes encoding enzymes of the general phenylpropanoid pathway in all the lines regardless of pigmentation; however, as the spike matured, unique transcriptomic patterns associated with melanin and anthocyanin synthesis stood out. Secondary activation of transcription of the genes encoding enzymes of the general phenylpropanoid pathway together with genes of monolignol synthesis was revealed in the line accumulating only melanin. This pattern differs from the one observed in the anthocyanin-accumulating lines, where - together with the genes of general phenylpropanoid and monolignol synthesis pathways - flavonoid biosynthesis genes were found to be upregulated, with earlier activation of these genes in the line accumulating both types of pigments. These transcriptomic shifts may underlie the observed differences in concentrations of phenylpropanoid metabolites analyzed in the grain at a late developmental stage by high-performance liquid chromatography. Both melanin-accumulating lines showed an increased total level of benzoic acids. By contrast, anthocyanin-accumulating lines showed higher concentrations of flavonoids and p-coumaric and ferulic acids. A possible negative effect of melanogenesis on the total flavonoid content and a positive influence on the anthocyanin content were noted in the line accumulating both types of pigments. As a conclusion, redirection of metabolic fluxes in the phenylpropanoid biosynthesis pathway occurs when melanin is synthesized.

4.
Front Plant Sci ; 11: 770, 2020.
Article in English | MEDLINE | ID: mdl-32655591

ABSTRACT

The word "melanin" refers to a group of high molecular weight, black, and brown pigments formed through the oxidation and polymerization of phenolic compounds. This pigment is present in all kingdoms of living organisms, but it remains the most enigmatic pigment in plants. The poor solubility of melanin in particular solvents and its complex polymeric nature significantly constrain its study. Plant melanin synthesis is mostly associated with the enzymatic browning reaction that occurs in wounded plant tissues. This reaction occurs when, due to the disruption of cellular compartmentation, the chloroplast-located polyphenol oxidases (PPOs) release from the chloroplast and interact with their vacuolar substrates to produce o-quinones, which in turn polymerize to melanin. Furthermore, the presence of melanin in intact seed tissues has been demonstrated by diagnostic physicochemical tests. Unlike the well-studied enzymatic browning reaction, little is known about how melanin is formed in seeds. Recent data have shown that it is a tightly controlled genetic process that involves many genes, among which the genes encoding PPOs might be key. The present article aims to provide an overview of the current knowledge on melanin in plants and to discuss future perspectives on its study in light of recent findings.

5.
BMC Plant Biol ; 17(Suppl 1): 182, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29143606

ABSTRACT

BACKGROUND: Some plant species have 'melanin-like' black seed pigmentation. However, the chemical and genetic nature of this 'melanin-like' black pigment have not yet been fully explored due to its complex structure and ability to withstand almost all solvents. Nevertheless, identification of genetic networks participating in trait formation is key to understanding metabolic processes involved in the expression of 'melanin-like' black seed pigmentation. The aim of the current study was to identify differentially expressed genes (DEGs) in barley near-isogenic lines (NILs) differing by allelic state of the Blp (black lemma and pericarp) locus. RESULTS: RNA-seq analysis of six libraries (three replicates for each line) was performed. A total of 957 genome fragments had statistically significant changes in expression levels between lines BLP and BW, with 632 fragments having increased expression levels in line BLP and 325 genome fragments having decreased expression. Among identified DEGs, 191 genes were recognized as participating in known pathways. Among these were metabolic pathways including 'suberin monomer biosynthesis', 'diterpene phytoalexins precursors biosynthesis', 'cutin biosynthesis', 'cuticular wax biosynthesis', and 'phenylpropanoid biosynthesis, initial reactions'. Differential expression was confirmed by real-time PCR analysis of selected genes. CONCLUSIONS: Metabolic pathways and genes presumably associated with black lemma and pericarp colour as well as Blp-associated resistance to oxidative stress and pathogens, were revealed. We suggest that the black pigmentation of lemmas and pericarps is related to increased level of phenolic compounds and their oxidation. The effect of functional Blp on the synthesis of ferulic acid and other phenolic compounds can explain the increased antioxidant capacity and biotic and abiotic stress tolerance of black-grained cereals. Their drought tolerance and resistance to diseases affecting the spike may also be related to cuticular wax biosynthesis. In addition, upregulated synthesis of phytoalexins, suberin and universal stress protein (USP) in lemmas and pericarps of the Blp carriers may contribute to their increased disease resistance. Further description of the DEGs haplotypes and study of their association with physiological characteristics may be useful for future application in barley pre-breeding.


Subject(s)
Genes, Plant , Hordeum/genetics , RNA, Plant , Alleles , Gene Expression Profiling , Gene Library , Gene Regulatory Networks , Metabolic Networks and Pathways/genetics , Oxidative Stress , Pigmentation/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA
6.
Molecules ; 19(12): 20266-79, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25486242

ABSTRACT

Bread wheat producing grain in which the pericarp is purple is considered to be a useful source of dietary anthocyanins. The trait is under the control of the Pp-1 homoealleles (mapping to each of the group 7 chromosomes) and Pp3 (on chromosome 2A). Here, TaMyc1 was identified as a likely candidate for Pp3. The gene encodes a MYC-like transcription factor. In genotypes carrying the dominant Pp3 allele, TaMyc1 was strongly transcribed in the pericarp and, although at a lower level, also in the coleoptile, culm and leaf. The gene was located to chromosome 2A. Three further copies were identified, one mapping to the same chromosome arm as TaMyc1 and the other two mapping to the two other group 2 chromosomes; however none of these extra copies were transcribed in the pericarp. Analysis of the effect of the presence of combinations of Pp3 and Pp-1 genotype on the transcription behavior of TaMyc1 showed that the dominant allele Pp-D1 suppressed the transcription of TaMyc1.


Subject(s)
Anthocyanins/biosynthesis , Triticum/metabolism , Alleles , Amino Acid Sequence , Chromosome Mapping , Gene Dosage , Gene Order , Genes, Plant , Genes, myc , Genetic Loci , Genotype , Molecular Sequence Data , Phenotype , Phylogeny , Quantitative Trait, Heritable , Sequence Alignment , Transcription, Genetic , Triticum/genetics
7.
Gene ; 538(2): 334-41, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24480448

ABSTRACT

Chalcone-flavanone isomerase (CHI; EC 5.5.1.6.) participates in the early step of flavonoid biosynthesis, related to plant adaptive and protective responses to environmental stress. The bread wheat genomic sequences encoding CHI were isolated, sequenced and mapped to the terminal segment of the long arms of chromosomes 5A, 5B and 5D. The loss of the final Chi intron and junction of the two last exons was found in the wheat A, B and D genomes compared to the Chi sequences of most other plant species. Each of the three diploid genomes of hexaploid wheat encodes functional CHI; however, transcription of the three homoeologous genes is not always co-regulated. In particular, the three genes demonstrated different response to salinity in roots: Chi-D1 was up-regulated, Chi-A1 responds medially, whereas Chi-B1 was not activated at all. The observed variation in transcriptional activity between the Chi homoeologs is in a good agreement with structural diversification of their promoter sequences. In addition, the correlation between Chi transcription and anthocyanin pigmentation in different parts of wheat plant has been studied. The regulatory genes controlling anthocyanin pigmentation of culm and pericarp modulated transcription of the Chi genes. However, in other organs, there was no strong relation between tissue pigmentation and the transcription of the Chi genes, suggesting complex regulation of the Chi expression in most parts of wheat plant.


Subject(s)
Genes, Plant , Intramolecular Lyases/genetics , Plant Proteins/genetics , Triticum/enzymology , Triticum/genetics , Amino Acid Sequence , Base Sequence , Chromosomes, Plant/genetics , Cloning, Molecular , DNA, Plant/genetics , Evolution, Molecular , Exons , Gene Expression , Intramolecular Lyases/chemistry , Introns , Modems , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Polyploidy , Promoter Regions, Genetic , Protein Conformation , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Species Specificity , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...