Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 22398, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575276

ABSTRACT

The natural gas liquid recovery is an important process in a gas plant to correct hydrocarbon dew point and earn profit. In this study, a natural gas liquid recovery unit operated based on the Joule-Thomson process was investigated and its performance was optimized. To improve the system performance, the plant configuration and intermediate pressure ratio were defined as the variables and maximization of the natural gas liquid recovery rate and maximization of exergy efficiency were defined as the objective functions. To improve the plant performance, the amount of natural gas liquid recovery rate should be increased. To achieve this goal, several scenarios for the intermediate pressure ratio and three new configurations were proposed for the investigated gas plant. In the proposed configurations, the supersonic separators with optimized structures were used instead of the Joule-Thomson process. It was observed that all three proposed configurations improved the natural gas liquid recovery rate compared to the existing configuration. For example, by installing two supersonic separators instead of second and third stage Joule-Thomson valve + low temperature separator, at the optimal operating condition, the natural gas liquid recovery rate increased about 390%. The influence of the intermediate pressure ratio on the phase envelope diagram, exergy efficiency, dew point depression and natural gas liquid recovery rate was also investigated. By comparing the influence of intermediate pressure ratio and modifying the plant configuration on the objective functions, it was observed that the system performance can be further improved by modifying the plant configuration.


Subject(s)
Natural Gas
2.
Sci Rep ; 12(1): 14457, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36002558

ABSTRACT

In this paper, three passive methods for the generation of swirl flow in the supersonic separator (3S) were investigated, and their structures were optimized by computational fluid dynamics (CFD) modeling. The influence of the structural and operational parameters on the dew point depression, phase envelope diagram, rate of natural gas liquid (NGL) recovery, and separation efficiency have also been evaluated. The collection efficiency was significantly improved for the nozzle equipped with the passive swirler compared with the simple nozzle. The selection of passive swirler type played a crucial role in the natural gas liquefaction and separation. The side injected swirler, and serpentine swirler showed the most significant improvement in separation efficiency than the U-turn swirler. For the side injected swirler at the optimum injection angle, the maximum collection efficiency was about 89% at the pressure loss ratio (PLR) of 0.2. Besides, the simulation results demonstrated that for the serpentine 3S, with the increase in serpentine twist number, the highest improvement on the collection efficiency of the investigated nozzle was obtained. In addition, it was observed that, when the convergent section profile was designed according to the Witoszynski line-type, a larger refrigeration zone was obtained than other considered profiles.


Subject(s)
Hydrodynamics , Natural Gas , Computer Simulation
3.
Sci Rep ; 11(1): 21850, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34750448

ABSTRACT

In this study, the effects of several structural and operational parameters affecting the separation efficiency of supersonic separators were investigated by numerical methods. Different turbulence models were used and their accuracies were evaluated. Based on the error analysis, the V2-f turbulence model was more accurate for describing the high swirling turbulent flow than other investigated turbulence models. Therefore, the V2-f turbulence model and particle tracing model were selected to optimize the structure of the convergence part, the diffuser, the drainage port, and the swirler. The cooling performance of three line-type in the convergent section were calculated. The simulation results demonstrated that the convergent section designed by the Witoszynski curve had higher cooling depth compared to the Bi-cubic and Quintic curves. Furthermore, the expansion angle of 2° resulted in the highest stability of fluid flow and therefore was selected in the design of the diffuser. The effect of incorporating the swirler and its structure on the separation performance of supersonic separator was also studied. Three different swirler types, including axial, wall-mounted, and helical, were investigated. It was observed that installing the swirler significantly improved the separation efficiency of the supersonic separator. In addition, the simulation results demonstrated that the separation efficiency was higher for the axial swirler compared to the wall-mounted and helical swirlers. Therefore, for the improved nozzle, the swirling flow was generated by the axial swirler. The optimized axial swirler was constructed from 12 arced vanes each of which had a swirl angle of 40°. For the optimized structure, the effects of operating parameters such as inlet temperature, pressure recovery ratio, density, and droplet size was also investigated. It was concluded that increasing the droplet size and density significantly improved the separation efficiency of the supersonic separator. For hydrocarbon droplets, the separation efficiency improved from 4.6 to 76.7% upon increasing the droplet size from 0.1 to 2 µm.

SELECTION OF CITATIONS
SEARCH DETAIL
...