Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(29): eadn3923, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39018411

ABSTRACT

Molybdenum is an essential micronutrient, but because of its toxicity at high concentrations, its accumulation in living organisms has not been widely demonstrated. In this study, we report that the marine sponge Theonella conica accumulates exceptionally high levels of molybdenum (46,793 micrograms per gram of dry weight) in a wide geographic distribution from the northern Red Sea to the reefs of Zanzibar, Indian Ocean. The element is found in various sponge body fractions and correlates to selenium. We further investigated the microbial composition of the sponge and compared it to its more studied congener, Theonella swinhoei. Our analysis illuminates the symbiotic bacterium Entotheonella sp. and its role in molybdenum accumulation. Through microscopic and analytical methods, we provide evidence of intracellular spheres within Entotheonella sp. that exhibit high molybdenum content, further unraveling the intricate mechanisms behind molybdenum accumulation in this sponge species and its significance in the broader context of molybdenum biogeochemical cycling.


Subject(s)
Molybdenum , Porifera , Molybdenum/metabolism , Animals , Porifera/metabolism , Indian Ocean , Pacific Ocean
2.
Ecotoxicol Environ Saf ; 222: 112522, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34304132

ABSTRACT

Arsenic (As) contamination of freshwater resources constitutes a major environmental issue affecting over 200 million people worldwide. Although the use of microorganisms for the bioremediation of As has been well studied, only very few candidates have been identified to date. Here, we investigated bacteria associated with the Red Sea sponge Theonella swinhoei and their potential to reduce As in a low-salinity liquid medium. This Indo-Pacific common sponge has been shown to hyper-accumulate As, at an average concentration of 8600 mg/g-1 in an environment uncontaminated by arsenic or barium. Four isolated strains of bacteria exhibited arsenic reduction potential by transforming inorganic As in the form of arsenate (iAsV) to arsenite (iAsIII). Two of these isolates were identified as Alteromonas macleodii and Pseudovibrio ascidisceicola, and the other two isolates, both belonging to the same species, were identified as Pseudovibrio denitrificans. The four isolates were then cultured in a low-salinity iAsV-rich medium (5 mM) and As concentration was measured over time using a specifically designed high-performance liquid chromatograph coupled to a mass spectrometer (HPLC-MS). Out of the four isolates, A. macleodii and P. ascidisceicola grew successfully in a low-salinity liquid medium and reduced AsV to AsIII at an average rate of 0.094 and 0.083 mM/h, respectively, thereby demonstrating great potential for the bioremediation of As-contaminated groundwater.


Subject(s)
Arsenic , Rhodobacteraceae , Theonella , Alteromonas , Animals , Arsenates , Biodegradation, Environmental , Humans , Phylogeny , RNA, Ribosomal, 16S
3.
Mar Drugs ; 20(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35049886

ABSTRACT

Theonella swinhoei is a fairly common inhabitant of reefs throughout the Indian and Pacific Oceans. Metabolomic analyses of samples of T. swinhoei collected in different depths in the Gulf of Aqaba revealed two chemotypes differing in the profiles of the theonellamides they produce, some of which seem to be unknown. Driven by this finding, we examined a sample of T. swinhoei collected more than 40 years ago in the southern part of the Gulf of Aqaba. Large-scale extract of this sample yielded four theonellamides, the known theopalauamide (4), as the major component, and three new metabolites, theonellamide J (1), 5-cis-Apoa-theopalauamide (2), and theonellamide K (3), as the minor components. The planar structure of these complex cyclic glycopeptides was elucidated by combination of 1D and 2D NMR techniques and HRESIMS. The absolute configuration of the amino acids was established by Marfey's and advanced Marfey's methods, and the absolute configuration of its galactose unit using "Tanaka's method" for monosaccharides. The biological activity of the pure compounds was tested for antibacterial activity and for cytotoxicity to HTC-116 cell line. The compounds presented significant cytotoxicity against the HTC-116 cell line, illuminating the importance of the Apoa subunit for the activity.


Subject(s)
Antineoplastic Agents/pharmacology , Glycopeptides/pharmacology , Peptides, Cyclic/pharmacology , Porifera , Theonella , Animals , Antineoplastic Agents/chemistry , Aquatic Organisms , Cell Line, Tumor/drug effects , Glycopeptides/chemistry , Humans , Indian Ocean , Pacific Ocean , Peptides, Cyclic/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...