Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-454782

ABSTRACT

Antibody responses serve as the primary protection against SARS-CoV-2 infection through neutralization of viral entry into cells. We have developed a two-dimensional multiplex bead binding assay (2D-MBBA) that quantifies multiple antibody isotypes against multiple antigens from a single measurement. Here, we applied our assay to profile IgG, IgM and IgA levels against the spike antigen, its receptor-binding domain and natural and designed mutants. Machine learning algorithms trained on the 2D-MBBA data substantially improve the prediction of neutralization capacity against the authentic SARS-CoV-2 virus of serum samples of convalescent patients. The algorithms also helped identify a set of antibody isotype-antigen datasets that contributed to the prediction, which included those targeting regions outside the receptor-binding interface of the spike protein. We applied the assay to profile samples from vaccinated, immune-compromised patients, which revealed differences in the antibody profiles between convalescent and vaccinated samples. Our approach can rapidly provide deep antibody profiles and neutralization prediction from essentially a drop of blood without the need of BSL-3 access and provides insights into the nature of neutralizing antibodies. It may be further developed for evaluating neutralizing capacity for new variants and future pathogens.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21257804

ABSTRACT

Patients with hematologic malignancies are a high priority for SARS-CoV-2 vaccination, yet the benefit they will derive is uncertain. We investigated the humoral response to vaccination in 53 non-Hodgkin lymphoma (NHL), Hodgkin lymphoma (HL), or CLL patients. Peripheral blood was obtained 2 weeks after first vaccination and 6 weeks after second vaccination for antibody profiling using the multiplex bead-binding assay. Serum IgG, IgA, and IgM antibody levels to the spike specific receptor binding domain (RBD) were evaluated as a measure of response. Subsequently, antibody-positive serum were assayed for neutralization capacity against authentic SARS-CoV-2. Histology was 68% lymphoma and 32% CLL; groups were: patients receiving anti-CD20-based therapy (45%), monitored with disease (28%), receiving BTK inhibitors (19%), or chemotherapy (all HL) (8%). SARS-CoV-2 specific RBD IgG antibody response was decreased across all NHL and CLL groups: 25%, 73%, and 40%, respectively. Antibody IgG titers were significantly reduced (p < 0.001) for CD20 treated and targeted therapy patients, and (p = 0.003) for monitored patients. In 94% of patients evaluated after first and second vaccination, antibody titers did not significantly boost after second vaccination. Only 13% of CD20 treated and 13% of monitored patients generated neutralizing antibodies to SARS-CoV-2 with ICD50s 135 to 1767, and 445 and > 10240. This data has profound implications given the current guidance relaxing masking restrictions and for timing of vaccinations. Unless immunity is confirmed with laboratory testing, these patients should continue to mask, socially distance, and to avoid close contact with non-vaccinated individuals. Statement of Translational RelevanceNon Hodgkin lymphoma (NHL) and Chronic Lymphocytic leukemia (CLL) patients who are treated with anti-CD20 antibody therapy, BTK inhibitor therapy, or who are monitored with active disease, have decreased antibody response to SARS-CoV-2 vaccination and decreased antibody titers compared to healthy controls. Antibody titers do not boost following second vaccination, and very few patients generate neutralizing antibodies against SARS-CoV-2. This data is of particular importance, given the recent guidance from the CDC that vaccinated patients no longer need to be masked indoors as well as outdoors. Patients with NHL or CLL who fall into these categories should not consider their immunity from vaccination to be assured. If infected with SARS-CoV-2, they should be a high priority for monoclonal antibody directed therapy. Unless immune response to vaccination is confirmed with laboratory testing, they should continue to mask, socially distance, and to avoid close contact with non-vaccinated individuals.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21255677

ABSTRACT

Both SARS-CoV-2 infection and vaccination elicit potent immune responses, but the durability and scope of immune responses remain to be elucidated. Here, we performed multimodal single- cell profiling of peripheral blood of patients with acute COVID-19 and healthy volunteers before and after receiving the SARS-CoV-2 BNT162b2 mRNA vaccine to compare the immune responses elicited by the virus and by the vaccine. Phenotypic and transcriptional profiling of immune cells, coupled with reconstruction of B and T cell receptor repertoires, enabled us to characterize and compare the host responses to the virus and to defined viral antigens. In COVID-19 patients, immune responses were characterized by a highly augmented interferon response which was largely absent in vaccine recipients. Increased interferon signaling likely contributed to the dramatic upregulation of cytotoxic genes in the peripheral T cells and innate- like lymphocytes observed in COVID-19 patients. Analysis of B and T cell repertoires revealed that while the majority of clonal lymphocytes in COVID-19 patients were effector cells, in vaccine recipients clonal expansion was primarily restricted to circulating memory cells. Taken together, our analysis of immune responses to the mRNA vaccine reveals that despite the lack of dramatic inflammation observed during infection, the vaccine elicits a robust adaptive immune response.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21252221

ABSTRACT

Mortality among patients with COVID-19 and respiratory failure is high and there are no known lower airway biomarkers that predict clinical outcome. We investigated whether bacterial respiratory infections and viral load were associated with poor clinical outcome and host immune tone. We obtained bacterial and fungal culture data from 589 critically ill subjects with COVID-19 requiring mechanical ventilation. On a subset of the subjects that underwent bronchoscopy, we also quantified SARS-CoV-2 viral load, analyzed the microbiome of the lower airways by metagenome and metatranscriptome analyses and profiled the host immune response. We found that isolation of a hospital-acquired respiratory pathogen was not associated with fatal outcome. However, poor clinical outcome was associated with enrichment of the lower airway microbiota with an oral commensal (Mycoplasma salivarium), while high SARS-CoV-2 viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique host transcriptome profile of the lower airways were most predictive of mortality. Collectively, these data support the hypothesis that 1) the extent of viral infectivity drives mortality in severe COVID-19, and therefore 2) clinical management strategies targeting viral replication and host responses to SARS-CoV-2 should be prioritized.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-365270

ABSTRACT

The COVID-19 pandemic remains a global threat, and host immunity remains the main mechanism of protection against the disease. The spike protein on the surface of SARS-CoV-2 is a major antigen and its engagement with human ACE2 receptor plays an essential role in viral entry into host cells. Consequently, antibodies targeting the ACE2-interacting surface (ACE2IS) located in the receptor-binding domain (RBD) of the spike protein can neutralize the virus. However, the understanding of immune responses to SARS-CoV-2 is still limited, and it is unclear how the virus protects this surface from recognition by antibodies. Here, we designed an RBD mutant that disrupts the ACE2IS and used it to characterize the prevalence of antibodies directed to the ACE2IS from convalescent sera of 94 COVID19-positive patients. We found that only a small fraction of RBD-binding antibodies targeted the ACE2IS. To assess the immunogenicity of different parts of the spike protein, we performed in vitro antibody selection for the spike and the RBD proteins using both unbiased and biased selection strategies. Intriguingly, unbiased selection yielded antibodies that predominantly targeted regions outside the ACE2IS, whereas ACE2IS-binding antibodies were readily identified from biased selection designed to enrich such antibodies. Furthermore, antibodies from an unbiased selection using the RBD preferentially bound to the surfaces that are inaccessible in the context of whole spike protein. These results suggest that the ACE2IS has evolved less immunogenic than the other regions of the spike protein, which has important implications in the development of vaccines against SARS-CoV-2.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-252353

ABSTRACT

Understanding antibody responses to SARS-CoV-2 is indispensable for the development of containment measures to overcome the current COVID-19 pandemic. Here, we determine the ability of sera from 101 recovered healthcare workers to neutralize both authentic SARS-CoV-2 and SARS-CoV-2 pseudotyped virus and address their antibody titers against SARS-CoV-2 nucleoprotein and spike receptor-binding domain. Interestingly, the majority of individuals have low neutralization capacity and only 6% of the healthcare workers showed high neutralizing titers against both authentic SARS-CoV-2 virus and the pseudotyped virus. We found the antibody response to SARS-CoV-2 infection generates antigen-specific isotypes as well as a diverse combination of antibody isotypes, with high titers of IgG, IgM and IgA against both antigens correlating with neutralization capacity. Importantly, we found that neutralization correlated with antibody titers as quantified by ELISA. This suggests that an ELISA assay can be used to determine seroneutralization potential. Altogether, our work provides a snapshot of the SARS-CoV-2 neutralizing antibody response in recovered healthcare workers and provides evidence that possessing multiple antibody isotypes may play an important role in SARS-CoV-2 neutralization.

SELECTION OF CITATIONS
SEARCH DETAIL
...