Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Mol Cancer Ther ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38670553

ABSTRACT

Oncogene-driven expression and activation of receptor tyrosine kinases (RTK) promotes tumorigenesis and contributes to drug resistance. Increased expression of the kinases DDR2 (Discoid Domain Receptor 2), RET, PDGFRA, KIT, MET, and ALK (Anaplastic Lymphoma Kinase) independently correlate with decreased overall survival (OS) and event free survival (EFS) of pediatric neuroblastoma. The multikinase inhibitor sitravatinib targets DDR2, RET, PDGFRA, KIT and MET with low nanomolar activity and we therefore tested its efficacy against orthotopic and syngeneic tumor models. Sitravatinib markedly reduced cell proliferation and migration in vitro independently of MYCN (N-Myc proto-oncogene), ALK, or MYC (c-Myc proto-oncogene) status, and inhibited proliferation and metastasis of human orthotopic xenografts. Oral administration of sitravatinib to homozygous Th-MYCN transgenic mice (Th-MYCN+/+) after tumor initiation completely arrested further tumor development with no mice dying of disease while maintained on sitravatinib treatment (control cohort 57 days median time to sacrifice). Among these top kinases, DDR2 expression has the strongest correlation with poor survival and high stage at diagnosis, and the highest sensitivity to the drug. We confirmed on-target inhibition of collagen-mediated activation of DDR2. Genetic knockdown of DDR2 partially phenocopies Sitravatinib treatment, limiting tumor development and metastasis across tumor models. Analysis of single cell sequencing data demonstrated that DDR2 is restricted to mesenchymal-type tumor subpopulations and is enriched in Schwann Cell Precursor (SCP) subpopulations found in high-risk disease. These data define an unsuspected role for sitravatinib as a therapeutic agent in neuroblastoma and reveal a novel function for DDR2 as a driver of tumor growth and metastasis.

2.
FEBS Open Bio ; 14(5): 867-882, 2024 May.
Article in English | MEDLINE | ID: mdl-38538106

ABSTRACT

The extracellular matrix (ECM) regulates carcinogenesis by interacting with cancer cells via cell surface receptors. Discoidin Domain Receptor 2 (DDR2) is a collagen-activated receptor implicated in cell survival, growth, and differentiation. Dysregulated DDR2 expression has been identified in various cancer types, making it as a promising therapeutic target. Additionally, cancer cells exhibit mechanosensing abilities, detecting changes in ECM stiffness, which is particularly important for carcinogenesis given the observed ECM stiffening in numerous cancer types. Despite these, whether collagen-activated DDR2 signaling and ECM stiffness-induced mechanosensing exert similar effects on cancer cell behavior and whether they operate through analogous mechanisms remain elusive. To address these questions, we performed bulk RNA sequencing (RNA-seq) on human SH-SY5Y neuroblastoma cells cultured on collagen-coated substrates. Our results show that DDR2 downregulation induces significant changes in the cell transcriptome, with changes in expression of 15% of the genome, specifically affecting the genes associated with cell division and differentiation. We validated the RNA-seq results by showing that DDR2 knockdown redirects the cell fate from proliferation to senescence. Like DDR2 knockdown, increasing substrate stiffness diminishes cell proliferation. Surprisingly, RNA-seq indicates that substrate stiffness has no detectable effect on the transcriptome. Furthermore, DDR2 knockdown influences cellular responses to substrate stiffness changes, highlighting a crosstalk between these two ECM-induced signaling pathways. Based on our results, we propose that the ECM could activate DDR2 signaling and mechanosensing in cancer cells to orchestrate their cell fate through distinct mechanisms, with or without involving gene expression, thus providing novel mechanistic insights into cancer progression.


Subject(s)
Discoidin Domain Receptor 2 , Neuroblastoma , Signal Transduction , Transcriptome , Humans , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Discoidin Domain Receptor 2/metabolism , Discoidin Domain Receptor 2/genetics , Transcriptome/genetics , Signal Transduction/genetics , Cell Line, Tumor , Extracellular Matrix/metabolism , Gene Expression Regulation, Neoplastic/genetics , Mechanotransduction, Cellular/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics
3.
Biomedicines ; 12(1)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38255303

ABSTRACT

High-risk neuroblastoma is a very aggressive pediatric cancer, accounting for ~15% of childhood cancer mortality. Therefore, novel therapeutic strategies for the treatment of neuroblastoma are urgently sought. Here, we focused on the potential implications of the Dual-specificity tYrosine-Regulated Kinase (DYRK) family and downstream signaling pathways. We used bioinformatic analysis of public datasets from neuroblastoma cohorts and cell lines to search correlations between patient survival and expression of DYRK kinases. Additionally, we performed biochemical, molecular, and cellular approaches to validate and characterize our observations, as well as an in vivo orthotopic murine model of neuroblastoma. We identified the DYRK3 kinase as a critical mediator of neuroblastoma cell proliferation and in vivo tumor growth. DYRK3 has recently emerged as a key regulator of several biomolecular condensates and has been linked to the hypoxic response of neuroblastoma cells. Our data suggest a role for DYRK3 as a regulator of the neuroblastoma-specific protein CAMKV, which is also required for neuroblastoma cell proliferation. CAMKV is a very understudied member of the Ca2+/calmodulin-dependent protein kinase family, originally described as a pseudokinase. We show that CAMKV is phosphorylated by DYRK3, and that inhibition of DYRK3 kinase activity induces CAMKV aggregation, probably mediated by its highly disordered C-terminal half. Importantly, we provide evidence that the DYRK3/CAMKV signaling module could play an important role for the function of the mitotic spindle during cell division. Our data strongly support the idea that inhibition of DYRK3 and/or CAMKV in neuroblastoma cells could constitute an innovative and highly specific intervention to fight against this dreadful cancer.

4.
NAR Cancer ; 5(1): zcad002, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36683916

ABSTRACT

Accurate assessment of treatment response and residual disease is indispensable for the evaluation of cancer treatment efficacy. However, performing tissue biopsies for longitudinal follow-up poses a major challenge in the management of solid tumours like neuroblastoma. In the present study, we evaluated whether circulating miRNAs are suitable to monitor neuroblastoma tumour burden and whether treatment-induced changes of miRNA abundance in the tumour are detectable in serum. We performed small RNA sequencing on longitudinally collected serum samples from mice carrying orthotopic neuroblastoma xenografts that were exposed to treatment with idasanutlin or temsirolimus. We identified 57 serum miRNAs to be differentially expressed upon xenograft tumour manifestation, out of which 21 were also found specifically expressed in the serum of human high-risk neuroblastoma patients. The murine serum levels of these 57 miRNAs correlated with tumour tissue expression and tumour volume, suggesting potential utility for monitoring tumour burden. In addition, we describe serum miRNAs that dynamically respond to p53 activation following treatment of engrafted mice with idasanutlin. We identified idasanutlin-induced serum miRNA expression changes upon one day and 11 days of treatment. By limiting to miRNAs with a tumour-related induction, we put forward hsa-miR-34a-5p as a potential pharmacodynamic biomarker of p53 activation in serum.

5.
Nat Commun ; 13(1): 3955, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803962

ABSTRACT

Protein arginine methyltransferase 5 (PRMT5) is the primary methyltransferase generating symmetric-dimethyl-arginine marks on histone and non-histone proteins. PRMT5 dysregulation is implicated in multiple oncogenic processes. Here, we report that PRMT5-mediated methylation of protein kinase B (AKT) is required for its subsequent phosphorylation at Thr308 and Ser473. Moreover, pharmacologic or genetic inhibition of PRMT5 abolishes AKT1 arginine 15 methylation, thereby preventing AKT1 translocation to the plasma membrane and subsequent recruitment of its upstream activating kinases PDK1 and mTOR2. We show that PRMT5/AKT signaling controls the expression of the epithelial-mesenchymal-transition transcription factors ZEB1, SNAIL, and TWIST1. PRMT5 inhibition significantly attenuates primary tumor growth and broadly blocks metastasis in multiple organs in xenograft tumor models of high-risk neuroblastoma. Collectively, our results suggest that PRMT5 inhibition augments anti-AKT or other downstream targeted therapeutics in high-risk metastatic cancers.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-akt , Arginine/metabolism , Cell Line, Tumor , Humans , Methylation , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
6.
Cancer Metastasis Rev ; 41(1): 33-52, 2022 03.
Article in English | MEDLINE | ID: mdl-34716856

ABSTRACT

BACKGROUND: Neuroblastoma is a devastating disease accounting for 15% of all childhood cancer deaths. Yet, our understanding of key molecular drivers such as receptor tyrosine kinases (RTKs) in this pathology remains poorly clarified. Here, we provide a systematic analysis of the RTK superfamily in the context of neuroblastoma pathogenesis. METHODS: Statistical correlations for all RTK family members' expression to neuroblastoma patient survival across 10 independent patient cohorts were annotated, synthesized, and ranked using the R2: Genomics Analysis and Visualization Platform. Gene expression of selected members across different cancer cell lines was further analyzed in the Cancer Cell Line Encyclopedia, part of the Cancer Dependency Map portal (depmap portal ( http://depmap.org )). Finally, we provide a detailed literature review for highly ranked candidates. RESULTS: Our analysis defined two subsets of RTKs showing robust associations with either better or worse survival, constituting potential novel players in neuroblastoma pathophysiology, diagnosis, and therapy. We review the available literature regarding the oncogenic functions of these RTKs, their roles in neuroblastoma pathophysiology, and potential utility as therapeutic targets. CONCLUSIONS: Our systematic analysis and review of the RTK superfamily in neuroblastoma pathogenesis provides a new resource to guide the research community towards focused efforts investigating signaling pathways that contribute to neuroblastoma tumor establishment, growth, and/or aggressiveness and targeting these druggable molecules in novel therapeutic strategies.


Subject(s)
Neuroblastoma , Receptor Protein-Tyrosine Kinases , Carcinogenesis , Cell Line, Tumor , Child , Humans , Neuroblastoma/metabolism , Neuroblastoma/physiopathology , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction
7.
Nat Commun ; 12(1): 7204, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893606

ABSTRACT

The H3K27me2/me3 histone demethylase KDM6B is essential to neuroblastoma cell survival. However, the mechanism of KDM6B action remains poorly defined. We demonstrate that inhibition of KDM6B activity 1) reduces the chromatin accessibility of E2F target genes and MYCN, 2) selectively leads to an increase of H3K27me3 but a decrease of the enhancer mark H3K4me1 at the CTCF and BORIS binding sites, which may, consequently, disrupt the long-range chromatin interaction of MYCN and E2F target genes, and 3) phenocopies the transcriptome induced by the specific CDK4/6 inhibitor palbociclib. Overexpression of CDK4/6 or Rb1 knockout confers neuroblastoma cell resistance to both palbociclib and the KDM6 inhibitor GSK-J4. These data indicate that KDM6B promotes an oncogenic CDK4/6-pRB-E2F pathway in neuroblastoma cells via H3K27me3-dependent enhancer-promoter interactions, providing a rationale to target KDM6B for high-risk neuroblastoma.


Subject(s)
Cyclin-Dependent Kinase 4/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/genetics , Neuroblastoma/metabolism , Oncogenes/genetics , Cell Line, Tumor , Cyclin-Dependent Kinase 4/genetics , Epigenomics , Gene Expression Regulation, Neoplastic , Histone Demethylases/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , N-Myc Proto-Oncogene Protein/genetics , Transcription Factors
8.
Pediatr Blood Cancer ; 67(10): e28417, 2020 10.
Article in English | MEDLINE | ID: mdl-32729196

ABSTRACT

BACKGROUND/OBJECTIVES: Standard supportive care during induction therapy for high-risk neuroblastoma (HR-NBL) includes primary prophylactic granulocyte colony-stimulating factor (G-CSF) aimed at limiting duration of neutropenia, reducing infection risk, and minimizing treatment delays. Preclinical models suggest that G-CSF promotes maintenance of neuroblastoma cancer stem cells and may reduce the efficacy of chemotherapy. This study's objective was to determine the safety and feasibility of administering induction chemotherapy without routine use of prophylactic G-CSF. DESIGN/METHODS: Children with newly diagnosed HR-NBL received six-cycle induction chemotherapy regimen without prophylactic G-CSF in four cycles. G-CSF was administered for stem cell mobilization after cycle 3 and granulocyte-monocyte colony-stimulating factor after cycle 5 prior to surgical resection of primary disease. The primary outcome measure was the incidence of grade 3 or higher infection. We hypothesized that the per patient infection rate would be comparable to our institutional baseline rate of 58% in patients with HR-NBL receiving induction chemotherapy with prophylactic growth factor support. The trial used an A'Hern single-stage design. RESULTS: Twelve patients with HR-NBL received 58 cycles of chemotherapy on study. Three patients completed the entire six-cycle regimen with no infections. Nine patients experienced grade 3 infections (bacteremia four, urinary tract infection two, skin/soft tissue infection three). No patients experienced grade 4 infections or required intensive care treatment for infection. CONCLUSION: A greater than expected number of serious bacterial infections were observed during administration of induction chemotherapy for HR-NBL without primary prophylactic G-CSF. These results support continued prophylactic administration growth factor during induction chemotherapy.


Subject(s)
Bacterial Infections/prevention & control , Granulocyte Colony-Stimulating Factor/administration & dosage , Hematopoietic Stem Cell Mobilization/methods , Induction Chemotherapy/methods , Neuroblastoma/drug therapy , Neutropenia/prevention & control , Adolescent , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Male , Neuroblastoma/pathology , Pilot Projects , Prognosis , Prospective Studies , Survival Rate , Time-to-Treatment
9.
JCI Insight ; 3(23)2018 12 06.
Article in English | MEDLINE | ID: mdl-30518699

ABSTRACT

In this study, the circulating miRNome from diagnostic neuroblastoma serum was assessed for identification of noninvasive biomarkers with potential in monitoring metastatic disease. After determining the circulating neuroblastoma miRNome, 743 miRNAs were screened in 2 independent cohorts of 131 and 54 patients. Evaluation of serum miRNA variance in a model testing for tumor stage, MYCN status, age at diagnosis, and overall survival revealed tumor stage as the most significant factor impacting miRNA abundance in neuroblastoma serum. Differential abundance analysis between patients with metastatic and localized disease revealed 9 miRNAs strongly associated with metastatic stage 4 disease in both patient cohorts. Increasing levels of these miRNAs were also observed in serum from xenografted mice bearing human neuroblastoma tumors. Moreover, murine serum miRNA levels were strongly associated with tumor volume. These findings were validated in longitudinal serum samples from metastatic neuroblastoma patients, where the 9 miRNAs were associated with disease burden and treatment response.


Subject(s)
Biomarkers, Tumor/blood , Circulating MicroRNA/blood , Neoplasm Metastasis/diagnosis , Neuroblastoma/blood , Neuroblastoma/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Female , Humans , Male , Mice , MicroRNAs/blood , Middle Aged , Neoplasm Staging , Transplantation, Heterologous , Young Adult
10.
11.
Oncotarget ; 9(29): 20323-20338, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29755654

ABSTRACT

The MYC oncogenes and p53 have opposing yet interrelated roles in normal development and tumorigenesis. How MYCN expression alters the biology and clinical responsiveness of pediatric neuroblastoma remains poorly defined. Neuroblastoma is p53 wild type at diagnosis and repression of p53 signaling is required for tumorigenesis. Here, we tested the hypothesis that MYCN amplification alters p53 transcriptional activity in neuroblastoma. Interestingly, we found that MYCN directly binds to the tetrameric form of p53 at its C-terminal domain, and this interaction is independent of MYCN/MAX heterodimer formation. Chromatin analysis of MYCN and p53 targets reveals dramatic changes in binding, as well as co-localization of the MYCN-p53 complex at p53-REs and E-boxes of genes critical to DNA damage responses and cell cycle progression. RNA sequencing studies show that MYCN-p53 co-localization significantly modulated the expression of p53 target genes. Furthermore, MYCN-p53 interaction leads to regulation of alternative p53 targets not regulated in the presence of low MYCN levels. These novel targets include a number of genes involved in lipid metabolism, DNA repair, and apoptosis. Taken together, our findings demonstrate a novel oncogenic role of MYCN as a transcriptional co-regulator of p53 in high-risk MYCN amplified neuroblastoma. Targeting this novel oncogenic function of MYCN may enhance p53-mediated responses and sensitize MYCN amplified tumors to chemotherapy.

12.
Cell Tissue Res ; 372(2): 245-262, 2018 05.
Article in English | MEDLINE | ID: mdl-29222693

ABSTRACT

Neuroblastoma (NB) is an aggressive pediatric cancer that originates from neural crest tissues of the sympathetic nervous system. NB is highly heterogeneous both from a clinical and a molecular perspective. Clinically, this cancer represents a wide range of phenotypes ranging from spontaneous regression of 4S disease to unremitting treatment-refractory progression and death of high-risk metastatic disease. At a cellular level, the heterogeneous behavior of NB likely arises from an arrest and deregulation of normal neural crest development. In the present review, we summarize our current knowledge of neural crest development as it relates to pathways promoting 'stemness' and how deregulation may contribute to the development of tumor-initiating CSCs. There is an emerging consensus that such tumor subpopulations contribute to the evolution of drug resistance, metastasis and relapse in other equally aggressive malignancies. As relapsed, refractory disease remains the primary cause of death for neuroblastoma, the identification and targeting of CSCs or other primary drivers of tumor progression remains a critical, clinically significant goal for neuroblastoma. We will critically review recent and past evidence in the literature supporting the concept of CSCs as drivers of neuroblastoma pathogenesis.


Subject(s)
Neural Crest/embryology , Neural Crest/pathology , Neuroblastoma/pathology , Animals , Humans , Neoplastic Stem Cells/pathology , Signal Transduction
13.
Oncotarget ; 8(55): 94780-94792, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29212266

ABSTRACT

Treatment failure in high risk neuroblastoma (NB) is largely due to the development of chemotherapy resistance. We analyzed the gene expression changes associated with exposure to chemotherapy in six high risk NB tumors with the aid of the Connectivity Map bioinformatics platform. Ten therapeutic agents were predicted to have a high probability of reversing the transcriptome changes associated with neoadjuvant chemotherapy treatment. Among these agents, initial screening showed the EWS-FLI1 and RNA helicase A interaction inhibitor YK-4-279, had obvious cytotoxic effects on NB cell lines. Using a panel of NB cell lines, including MYCN nonamplified (SK-N-AS, SH-SY5Y, and CHLA-255), and MYCN amplified (NB-19, NGP, and IMR-32) cell lines, we found that YK-4-279 had cytotoxic effects on all lines tested. In addition, YK-4-279 also inhibited cell proliferation and anchorage-independent growth and induced cell apoptosis of these cells. YK-4-279 enhanced the cytotoxic effect of doxorubicin (Dox). Moreover, YK-4-279 was able to overcome the established chemoresistance of LA-N-6 NB cells. In an orthotopic xenograft NB mouse model, YK-4-279 inhibited NB tumor growth and induced apoptosis in tumor cells through PARP and Caspase 3 cleavage in vivo. While EWS-FLI1 fusion protein is not frequently found in NB, using the R2 public database of neuroblastoma outcome and gene expression, we found that high expression of EWSR1 was associated with poor patient outcome. Knockdown of EWSR1 inhibited the oncogenic potential of neuroblastoma cell lines. Taken together, our results indicate that YK-4-279 might be a promising agent for treatment of NB that merits further exploration.

14.
Oncotarget ; 8(34): 57047-57057, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28915653

ABSTRACT

Wild-type p53 tumor suppressor activity in neuroblastoma tumors is hampered by increased MDM2 activity, making selective MDM2 antagonists an attractive therapeutic strategy for this childhood malignancy. Since monotherapy in cancer is generally not providing long-lasting clinical responses, we here aimed to identify small molecule drugs that synergize with idasanutlin (RG7388). To this purpose we evaluated 15 targeted drugs in combination with idasanutlin in three p53 wild type neuroblastoma cell lines and identified the BCL2 inhibitor venetoclax (ABT-199) as a promising interaction partner. The venetoclax/idasanutlin combination was consistently found to be highly synergistic in a diverse panel of neuroblastoma cell lines, including cells with high MCL1 expression levels. A more pronounced induction of apoptosis was found to underlie the synergistic interaction, as evidenced by caspase-3/7 and cleaved PARP measurements. Mice carrying orthotopic xenografts of neuroblastoma cells treated with both idasanutlin and venetoclax had drastically lower tumor weights than mice treated with either treatment alone. In conclusion, these data strongly support the further evaluation of dual BCL2/MDM2 targeting as a therapeutic strategy in neuroblastoma.

15.
Clin Cancer Res ; 23(21): 6629-6639, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28821555

ABSTRACT

Purpose: mTORC1 inhibitors are promising agents for neuroblastoma therapy; however, they have shown limited clinical activity as monotherapy, thus rational drug combinations need to be explored to improve efficacy. Importantly, neuroblastoma maintains both an active p53 and an aberrant mTOR signaling.Experimental Design: Using an orthotopic xenograft model and modulating p53 levels, we investigated the antitumor effects of the mTORC1 inhibitor temsirolimus in neuroblastoma expressing normal, decreased, or mutant p53, both as single agent and in combination with first- and second-generation MDM2 inhibitors to reactivate p53.Results: Nongenotoxic p53 activation suppresses mTOR activity. Moreover, p53 reactivation via RG7388, a second-generation MDM2 inhibitor, strongly enhances the in vivo antitumor activity of temsirolimus. Single-agent temsirolimus does not elicit apoptosis, and tumors rapidly regrow after treatment suspension. In contrast, our combination therapy triggers a potent apoptotic response in wild-type p53 xenografts and efficiently blocks tumor regrowth after treatment completion. We also found that this combination uniquely led to p53-dependent suppression of survivin whose ectopic expression is sufficient to rescue the apoptosis induced by our combination.Conclusions: Our study supports a novel highly effective strategy that combines RG7388 and temsirolimus in wild-type p53 neuroblastoma, which warrants testing in early-phase clinical trials. Clin Cancer Res; 23(21); 6629-39. ©2017 AACR.


Subject(s)
Neuroblastoma/drug therapy , Proto-Oncogene Proteins c-mdm2/genetics , TOR Serine-Threonine Kinases/genetics , Tumor Suppressor Protein p53/genetics , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mice , Neuroblastoma/genetics , Neuroblastoma/pathology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyrrolidines/administration & dosage , Sirolimus/administration & dosage , Sirolimus/analogs & derivatives , TOR Serine-Threonine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays , para-Aminobenzoates/administration & dosage
16.
BMJ ; 357: j1863, 2017 05 03.
Article in English | MEDLINE | ID: mdl-28468760
17.
J Cell Biochem ; 118(2): 221-231, 2017 02.
Article in English | MEDLINE | ID: mdl-27428599

ABSTRACT

The neural crest is a population of cells in the vertebrate embryo that gives rise to a wide range of tissues and cell types, including components of the peripheral nervous system and the craniofacial skeleton as well as melanocytes and the adrenal medulla. Aberrations in neural crest development can lead to numerous diseases, including cancers such as melanoma and neuroblastoma. Cancer stem cells (CSCs) have been identified in these neural crest-derived tumors, and these CSCs demonstrate resistance to treatment and are likely key contributors to disease relapse. Patients with neural crest-derived tumors often have poor outcomes due to frequent relapses, likely due to the continued presence of residual treatment-resistant CSCs, and therapies directed against these CSCs are likely to improve patient outcomes. CSCs share many of the same genetic and biologic features of primordial neural crest cells, and therefore a better understanding of neural crest development will likely lead to the development of effective therapies directed against these CSCs. Signaling through STAT3 has been shown to be required for neural crest development, and granulocyte colony stimulating factor (GCSF)-mediated activation of STAT3 has been shown to play a role in the pathogenesis of neural crest-derived tumors. Expression of the cell surface marker CD114 (the receptor for GCSF) has been identified as a potential marker for CSCs in neural crest-derived tumors, suggesting that CD114 expression and function may contribute to disease relapse and poor patient outcomes. Here we review the processes of neural crest development and tumorigenesis and we discuss the previously identified markers for CSC subpopulations identified in neural crest tumors and their role in neural crest tumor biology. We also discuss the potential for CD114 and downstream intracellular signaling pathways as potential targets for CSC-directed therapy. J. Cell. Biochem. 118: 221-231, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Adrenal Gland Neoplasms/metabolism , Antigens, CD/metabolism , Biomarkers, Tumor/metabolism , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Neural Crest/metabolism , Adrenal Gland Neoplasms/pathology , Adrenal Gland Neoplasms/therapy , Animals , Humans , Neoplastic Stem Cells/pathology , Neural Crest/pathology
18.
Sci Rep ; 6: 37876, 2016 11 30.
Article in English | MEDLINE | ID: mdl-27901112

ABSTRACT

The ongoing ascent of sequencing technologies has enabled researchers to gain unprecedented insights into the RNA content of biological samples. MiRNAs, a class of small non-coding RNAs, play a pivotal role in regulating gene expression. The discovery that miRNAs are stably present in circulation has spiked interest in their potential use as minimally-invasive biomarkers. However, sequencing of blood-derived samples (serum, plasma) is challenging due to the often low RNA concentration, poor RNA quality and the presence of highly abundant RNAs that dominate sequencing libraries. In murine serum for example, the high abundance of tRNA-derived small RNAs called 5' tRNA halves hampers the detection of other small RNAs, like miRNAs. We therefore evaluated two complementary approaches for targeted depletion of 5' tRNA halves in murine serum samples. Using a protocol based on biotinylated DNA probes and streptavidin coated magnetic beads we were able to selectively deplete 95% of the targeted 5' tRNA half molecules. This allowed an unbiased enrichment of the miRNA fraction resulting in a 6-fold increase of mapped miRNA reads and 60% more unique miRNAs detected. Moreover, when comparing miRNA levels in tumor-carrying versus tumor-free mice, we observed a three-fold increase in differentially expressed miRNAs.


Subject(s)
MicroRNAs/genetics , RNA, Transfer/genetics , Serum/metabolism , Animals , Biomarkers, Tumor/genetics , Female , Gene Expression/genetics , High-Throughput Nucleotide Sequencing/methods , Male , Mice , Neoplasms/genetics , Sequence Analysis, RNA/methods
19.
PLoS One ; 11(11): e0165877, 2016.
Article in English | MEDLINE | ID: mdl-27861510

ABSTRACT

Liposomal chemotherapeutics are exemplified by DOXIL® are commonly used in adult cancers. While these agents exhibit improved safety profile compared to their free drug counterparts, their treatment response rates have been ~ 20%, often attributed to the heterogeneous intratumoral uptake and distribution of liposomal nanoparticles. Non-invasive and quantitative monitoring of the uptake and distribution of liposomal nanoparticles in solid tumors could allow for patient stratification and personalized cancer nanomedicine. In this study, the variability of liposomal nanoparticle intratumoral distribution and uptake in orthotopic models of pediatric neuroblastoma was investigated using a liposomal nanoprobe visualized by high-resolution computed tomography (CT). Two human neuroblastoma cell lines (NGP: a MYCN-amplified line, and SH-SY5Y a MYCN non-amplified line) were implanted in the renal capsule of nude mice to establish the model. Intratumoral nanoparticle uptake was measured at tumor ages 1, 2, 3 and 4 weeks post implantation. The locations of uptake within the tumor were mapped in the 3-dimensional reconstructed images. Total uptake was measured by integration of the x-ray absorption signal over the intratumoral uptake locations. Both tumor models showed significant variation in nanoparticle uptake as the tumors aged. Observation of the uptake patterns suggested that the nanoparticle uptake was dominated by vascular leak at the surface/periphery of the tumor, and localized, heterogeneous vascular leak in the interior of the tumor. Slow growing SH-SY5Y tumors demonstrated uptake that correlated directly with the tumor volume. Faster growing NGP tumor uptake did not correlate with any tumor geometric parameters, including tumor volume, tumor surface area, and R30 and R50, measures of uptake localized to the interior of the tumor. However, uptake for both SH-SY5Y and NGP tumors correlated almost perfectly with the leak volume, as measured by CT. These results suggest that the uptake of nanoparticles is heterogeneous and not governed by tumor geometry. An imaging nanoprobe remains the best measure of nanoparticle uptake in these tumor models.


Subject(s)
Nanoparticles , Neuroblastoma/diagnostic imaging , Neuroblastoma/pathology , Animals , Cell Line, Tumor , Contrast Media/administration & dosage , Disease Models, Animal , Female , Heterografts , Humans , Iodine/metabolism , Mice , Tumor Burden , X-Ray Microtomography
20.
Oncotarget ; 7(17): 24018-26, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-26993602

ABSTRACT

Neuroblastoma (NB) is the most common extracranial pediatric solid tumor with high mortality rates. The tyrosine kinase c-Src has been known to play an important role in differentiation of NB cells, but the mechanism of c-Src regulation has not been defined. Here, we characterize PAG1 (Cbp, Csk binding protein), a central inhibitor of c-Src and other Src family kinases, as a novel tumor suppressor in NB. Clinical cohort analysis demonstrate that low expression of PAG1 is a significant prognostic factor for high stage disease, increased relapse, and worse overall survival for children with NB. PAG1 knockdown in NB cells promotes proliferation and anchorage-independent colony formation with increased activation of AKT and ERK downstream of c-Src, while PAG1 overexpression significantly rescues these effects. In vivo, PAG1 overexpression significantly inhibits NB tumorigenicity in an orthotopic xenograft model. Our results establish PAG1 as a potent tumor suppressor in NB by inhibiting c-Src and downstream effector pathways. Thus, reactivation of PAG1 and inhibition of c-Src kinase activity represents an important novel therapeutic approach for high-risk NB.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Biomarkers, Tumor/metabolism , Genes, Tumor Suppressor , Membrane Proteins/metabolism , Neuroblastoma/pathology , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Child , Female , Humans , Membrane Proteins/genetics , Mice, Nude , Neuroblastoma/genetics , Neuroblastoma/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...