Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res Perspect ; 2(5): e00068, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25505610

ABSTRACT

COA-Cl (2Cl-C.OXT-A) is a recently developed adenosine-like nucleic acid analog that promotes angiogenesis via the mitogen-activated protein (MAP) kinases ERK1/2. Endothelial S1P1 receptor plays indispensable roles in developmental angiogenesis. In this study, we examined the functions of S1P1 in COA-Cl-induced angiogenic responses. Antagonists for S1P1, W146, and VPC23019, substantially but still partly inhibited the effects of COA-Cl with regard to ERK1/2 activation and tube formation in cultured human umbilical vein endothelial cells (HUVEC). Antagonists for adenosine A1 receptor and purinergic P2Y1 receptor were without effect. Genetic knockdown of S1P1 with siRNA, but not that of S1P3, attenuated COA-Cl-elicited ERK1/2 responses. The signaling properties of COA-Cl showed significant similarities to those of sphingosine 1-phosphate, an endogenous S1P1 ligand, in that both induced responses sensitive to pertussis toxin (Gα i/o inhibitor), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), (calcium chelator), and PP2 (c-Src tyrosine kinase inhibitor). COA-Cl elevated intracellular Ca(2+) concentration and induced tyrosine phosphorylation of p130Cas, a substrate of c-Src, in HUVEC. COA-Cl displaced [(3)H]S1P in a radioligand-binding competition assay in chem-1 cells overexpressing S1P1. However, COA-Cl activated ERK1/2 in CHO-K1 cells that lack functional S1P1 receptor, suggesting the presence of additional yet-to-be-defined COA-Cl target in these cells. The results thus suggest the major contribution of S1P1 in the angiogenic effects of COA-Cl. However, other mechanism such as that seen in CHO-K1 cells may also be partly involved. Collectively, these findings may lead to refinement of the design of this nucleic acid analog and ultimately to development of small molecule-based therapeutic angiogenesis.

2.
Am J Physiol Cell Physiol ; 304(8): C790-800, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23426970

ABSTRACT

Steroids exert direct actions on cardiovascular cells, although underlying molecular mechanisms remain incompletely understood. We examined if steroids modulate abundance of caveolin-1, a regulatory protein of cell-surface receptor pathways that regulates the magnitudes of endothelial response to vascular endothelial growth factor (VEGF). Dexamethasone, a synthetic glucocorticoid, induces caveolin-1 at both levels of protein and mRNA in a time- and dose-dependent manner in pharmacologically relevant concentrations in cultured bovine aortic endothelial cells. Aldosterone, a mineralocorticoid, but not the sex steroids 17ß-estradiol, testosterone, or progesterone, elicits similar caveolin-1 induction. Caveolin-1 induction by dexamethasone and that by aldosterone were abrogated by RU-486, an inhibitor of glucocorticoid receptor, and by spironolactone, a mineralocorticoid receptor inhibitor, respectively. Dexamethasone attenuates VEGF-induced responses at the levels of protein kinases Akt and ERK1/2, small-G protein Rac1, nitric oxide production, and migration. When induction of caveolin-1 by dexamethasone is attenuated either by genetically by transient transfection with small interfering RNA or pharmacologically by RU-486, kinase responses to VEGF are rescued. Dexamethasone also increases expression of caveolin-1 protein in cultured human umbilical vein endothelial cells, associated with attenuated tube formation responses of these cells when cocultured with normal fibroblasts. Immunohistochemical analyses revealed that intraperitoneal injection of dexamethasone induces endothelial caveolin-1 protein in thoracic aorta and in lung artery in healthy male rats. Thus steroids functionally attenuate endothelial responses to VEGF via caveolin-1 induction at the levels of signal transduction, migration, and tube formation, identifying a novel point of cross talk between nuclear and cell-surface receptor signaling pathways.


Subject(s)
Caveolin 1/biosynthesis , Dexamethasone/pharmacology , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/physiology , Animals , Cattle , Cells, Cultured , Endothelial Cells/drug effects , Humans , Male , Rats , Rats, Wistar
3.
Am J Physiol Cell Physiol ; 297(5): C1263-74, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19710365

ABSTRACT

In vascular endothelial cells, specialized microdomains of plasma membrane termed caveolae modulate various receptor signal transduction pathways regulated by caveolin-1, a resident protein of caveolae. We examined whether transforming growth factor-beta1 (TGF-beta1), a multifunctional cytokine, alters expression levels of caveolin-1 and influences heterologous receptor signaling. Treatment of cultured bovine aortic endothelial cells (BAEC) with TGF-beta1 induces marked decreases in caveolin-1 expression in a time- and dose-dependent fashion at both levels of protein and mRNA. A pharmacological inhibitor of activin receptor-like kinase 5 (ALK-5) counteracts caveolin-1 downregulation by TGF-beta1, indicating the involvement of ALK-5 receptor subtype for TGF-beta1. Sphingosine 1-phosphate (S1P) is a serum-borne angiogenic lipid growth factor that exerts a wide variety of biological actions. S1P modulates G protein-coupled S1P receptors, activating downstream molecules kinases AMP-activated protein kinase (AMPK), and Akt as well as a small G protein Rac1, ultimately to promote migration. Because S1P receptor signaling is associated with caveolae/caveolin-1, we examined whether pretreatment with TGF-beta1 enhances effects of S1P on BAEC. Whereas S1P alone evokes robust BAEC responses to S1P, pretreatment with TGF-beta1 leads to even higher magnitudes of S1P-elicited signaling responses and cell migration. Conversely, genetic knockdown of caveolin-1 using small interfering RNA mimics TGF-beta1-induced promotion of BAEC responses to S1P. Collectively, these data demonstrate that TGF-beta1 downregulates caveolin-1 of cultured endothelial cells, involving ALK-5 receptor subtype. Because downregulation of caveolin-1 by TGF-beta1 promotes subsequent heterologous receptor signaling by S1P, these results may also identify novel point of cross-talk between cytokines and sphingolipids within endothelial signal transduction machineries.


Subject(s)
Caveolin 1/biosynthesis , Endothelial Cells/metabolism , Lysophospholipids/metabolism , Signal Transduction/physiology , Sphingosine/analogs & derivatives , Transforming Growth Factor beta1/metabolism , Animals , Cattle , Cell Movement/physiology , Cells, Cultured , Down-Regulation , Immunoblotting , Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sphingosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...