Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Histochem Cell Biol ; 134(1): 13-22, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20505950

ABSTRACT

In the sensory ganglia, neurons are devoid of synaptic contacts, and ganglion neurons surrounded by one of glial cells, satellite cells. Recent studies suggest that neurons and satellite cells interact through neurotransmitters. In the present study, intracellular Ca(2+) ([Ca(2+)](i)) dynamics of neurons and satellite cells from one of viscerosensory ganglia, nodose ganglion (NG), were investigated by stimulation with glutamate and its agonist and/or the antagonist of the GABA(A) receptor bicuculline. In the specimens containing neurons with satellite cells, glutamate and a metabotropic glutamate receptor (mGluR) agonist t-ACPD evoked [Ca(2+)](i) increases in both neurons and surrounding satellite cells. Moreover, bicuculline also induced [Ca(2+)](i) increases in neurons and satellite cells. However, in the isolated neurons, bicuculline did not cause an increase in [Ca(2+)](i), suggesting that satellite cells are equipped with the ability to release GABA. In the neurons associated with satellite cells, the delay time until the onset of a response was shorter in the case of glutamate stimulation with bicuculline than that without bicuculline (107.3 +/- 93.4 vs. 231.8 +/- 97.0 s, p < 0.01). Furthermore, immunoreactivities for glutamate transporter, GLAST, and GABA transporter, GAT-3, were observed in both neurons and satellite cells of NG. In conclusion, the levels of [Ca(2+)](i) of NG neurons and surrounding satellite cells are increased by glutamate through at least mGluRs, and endogenous GABA modulates these responses; GABA inhibition is dependent on a close association between neurons and satellite cells. Such neuron-glia interaction in the nodose ganglion may regulate sensory information from visceral organs.


Subject(s)
Calcium/analysis , Glutamic Acid/metabolism , Neurons/metabolism , Nodose Ganglion/cytology , Nodose Ganglion/metabolism , Satellite Cells, Perineuronal/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Calcium/metabolism , Calcium Signaling , Immunohistochemistry , Male , Microscopy, Electron, Scanning , Neurons/cytology , Rats , Rats, Wistar , Satellite Cells, Perineuronal/cytology
2.
Anticancer Res ; 26(3A): 1917-23, 2006.
Article in English | MEDLINE | ID: mdl-16827125

ABSTRACT

Twenty-six trihaloacetylazulene derivatives were investigated for their tumor-specific cytotoxicity and apoptosis-inducing activity against three human normal cells (HGF, HPC, HPLF) and four human tumor cell lines (HSC-2, HSC-3, HSC-4, HL-60). The trichloroacetylazulenes [1b-13b] generally showed higher cytotoxicity as compared to the corresponding trifluoroacetylazulenes [1a-13a]. The trichloroacetylazulenes [1b-13b] also showed higher tumor-specific cytotoxicity (expressed as TS value) than the corresponding trifluoroacetylazulenes [1a-13a]. Especially, 2,3-dimethyl-1-trichloroacetylazulene [5b] and 1,3-ditrichloroacetyl-4,6,8-trimethylazulene [11b] showed the highest cytotoxicity and tumor specificity (TS > 35.6 and > 44.1, respectively). These compounds induced internucleosomal DNA fragmentation in HL-60 cells, but not in HSC-2 and HSC-3 cells, but activated caspase-3, -8 and -9 in all of these cells, suggesting the activation of both mitochondria-independent (extrinsic) and dependent (intrinsic) pathways. Western blot analysis showed that two compounds [5b, 11b] slightly increased the intracellular concentration of pro-apoptotic proteins (Bad, Bax) in HSC-2 cells. None of the 26 compounds showed anti-HIV activity. These results suggest [5b] and [11b] as possible candidates for future cancer chemotherapy.


Subject(s)
Azulenes/pharmacology , Carcinoma, Squamous Cell/drug therapy , Mouth Neoplasms/drug therapy , Apoptosis/drug effects , Azulenes/chemistry , Carcinoma, Squamous Cell/pathology , Cell Line , Cell Line, Tumor , Drug Screening Assays, Antitumor , Fibroblasts/cytology , Fibroblasts/drug effects , HL-60 Cells , Humans , Hydrocarbons, Halogenated/chemistry , Hydrocarbons, Halogenated/pharmacology , Mouth Neoplasms/pathology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...