Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 105(2)2024 02.
Article in English | MEDLINE | ID: mdl-38376490

ABSTRACT

Reactive oxygen species (ROS) accumulation inside the cells instigates oxidative stress, activating stress-responsive genes. The viral strategies for promoting stressful conditions and utilizing the induced host proteins to enhance their replication remain elusive. The present work investigates the impact of oxidative stress responses on Newcastle disease virus (NDV) pathogenesis. Here, we show that the progression of NDV infection varies with intracellular ROS levels. Additionally, the results demonstrate that NDV infection modulates the expression of oxidative stress-responsive genes, majorly sirtuin 7 (SIRT7), a NAD+-dependent deacetylase. The modulation of SIRT7 protein, both through overexpression and knockdown, significantly impacts the replication dynamics of NDV in DF-1 cells. The activation of SIRT7 is found to be associated with the positive regulation of cellular protein deacetylation. Lastly, the results suggested that NDV-driven SIRT7 alters NAD+ metabolism in vitro and in ovo. We concluded that the elevated expression of NDV-mediated SIRT7 protein with enhanced activity metabolizes the NAD+ to deacetylase the host proteins, thus contributing to high virus replication.


Subject(s)
Newcastle disease virus , Sirtuins , Animals , NAD , Newcastle disease virus/genetics , Oxidative Stress , Reactive Oxygen Species , Sirtuins/genetics , Chickens , Cell Line
2.
ACS Chem Neurosci ; 15(2): 268-277, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38170988

ABSTRACT

The emergence of neurodegenerative diseases is connected to several pathogenic factors, including metal ions, amyloidogenic proteins, and reactive oxygen species. Recent studies suggest that cytotoxicity is caused by the small, dynamic, and metastable nature of early stage oligomeric species. This work introduces a small molecule-based red-emitting probe with smart features such as increased reactivities against multiple targets, metal-free amyloid-ß (Aß), and metal-bound amyloid-ß (Aß), and most importantly, early stage oligomeric species which are associated with the most common and widespread type of dementia, Alzheimer's disease (AD). Theoretical analyses like molecular dynamics simulation and molecular docking were performed to confirm the reactivity of the molecule toward Aß and found some excellent interactions between the molecule and the peptide. The in vitro and cellular studies demonstrated that this highly biocompatible molecule effectively reduces the structural damage to mitochondria while shielding cells from apoptosis, scavenges ROS (reactive oxygen species), and attenuates multifaceted amyloid toxicity.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Reactive Oxygen Species/metabolism , Molecular Docking Simulation , Amyloid beta-Peptides/metabolism , Metals/metabolism
3.
Res Vet Sci ; 150: 122-130, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-35816768

ABSTRACT

The continuous emergence of Newcastle disease virus (NDV) poses a persistent threat to the poultry industry. Recent increasing outbreaks of NDV in the North East region of India have highlighted the need to closely monitor and analyze the potential risk factors for Newcastle disease (ND) outbreaks. In the present study, an attempt was made to genotype the circulating Newcastle disease virus (NDV) in the backyard and commercial poultry flocks in Assam, India. Sera samples from unvaccinated backyard poultry flocks and tissue samples of ND suspected cases were collected and tested for the presence of NDV antibodies using the Haemagglutination inhibition (HI) test. A total of seven NDV isolates were analyzed from different districts of Assam, India, both genotypically and pathotypically. All isolates were characterized as virulent, carrying 112RRKQRF117 amino acid residues at the cleavage site. As determined by phylogenetic analysis, the isolates clustered with members of genotype XIII of class II NDV. Further analysis of risk factors of ND occurrence was conducted through a questionnaire survey. All the results indicated an occurrence of genotype XIII of NDV in the farms with inadequate biosecurity and farming practices.


Subject(s)
Newcastle Disease , Poultry Diseases , Animals , Chickens , Genotype , Newcastle Disease/epidemiology , Newcastle disease virus/genetics , Phylogeny , Poultry , Poultry Diseases/epidemiology , Risk Factors
4.
Virus Res ; 318: 198845, 2022 09.
Article in English | MEDLINE | ID: mdl-35680004

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection presents an immense global health problem. Spike (S) protein of coronavirus is the primary determinant of its entry into the host as it consists of both receptor binding and fusion domain. Besides tissue tropism, and host range, coronavirus pathogenesis are primarily controlled by the interaction of S protein with the cell receptor. Moreover, the proteolytic activation of S protein by host cell proteases plays a decisive role. The host-cell proteases have shown to be involved in the proteolysis of S protein and cleaving it into two functional subunits, S1 and S2, during the maturation process. In the present study, the interaction of the S protein of SARS-CoV-2 with different host proteases like furin, cathepsin B, and plasmin has been analyzed using molecular docking and molecular dynamics (MD) simulation. Incorporation of the furin cleavage site (R-R-A-R) in the S protein of SARS-CoV-2 has been studied by mutating the individual amino acid. MD simulation results suggest the polytropic nature of the S protein. Our analysis indicated that a single amino acid substitution in the polybasic cleavage site of S protein perturb the binding of cellular proteases. This mutation study might help to generate an attenuated SARS-CoV-2. Besides, targeting host proteases by inhibitors may result in a practical approach to stop the cellular spread of SARS-CoV-2 and develop its antiviral.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Furin/chemistry , Humans , Molecular Docking Simulation , Peptide Hydrolases/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
5.
Curr Opin Pharmacol ; 60: 158-167, 2021 10.
Article in English | MEDLINE | ID: mdl-34425392

ABSTRACT

Ebola virus disease targets and destroys immune cells, including macrophages and dendritic cells, leading to impairment of host response. After infection, a combination of strategies including alteration and evasion of immune response culminating in a strong inflammatory response can lead to multi-organ failure and death in most infected patients. This review discusses immune response dynamics, mainly focusing on how Ebola manipulates innate and adaptive immune responses and strategizes to thwart host immune responses. We also discuss the challenges and prospects of developing therapeutics and vaccines against Ebola.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Immunity, Innate , Macrophages
6.
RSC Med Chem ; 12(6): 1005-1015, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34223166

ABSTRACT

The devastating antibacterial infections, coupled with their antibiotic resistance abilities, emphasize the need for effective antibacterial therapeutics. In this prospect, liposomal delivery systems have been employed in improving the efficacy of the antibacterial agents. The liposome-based antibiotics enhance the therapeutic potential of the new or existing antibiotics and reduce their adverse effects. The current study describes the development of sulfonium-based antibacterial lipids that demonstrate the delivery of existing antibiotics. The presence of cationic sulfonium moieties and inherent membrane targeting abilities of the lipids could help reduce the antibiotic resistance abilities of the bacteria and deliver the antibiotics to remove the infectious pathogens electively. The transmission electron microscopic images and dynamic light scattering analyses revealed the liposome formation abilities of the sulfonium-based amphiphilic compounds in the aqueous medium. The effectiveness of the compounds was tested against the Gram-negative and Gram-positive bacterial strains. The viability of the bacterial cells was remarkably reduced in the presence of the compounds. The sulfonium-based compounds with pyridinium moiety and long hydrocarbon chains showed the most potent antibacterial activities among the tested compounds. Mechanistic studies revealed the membrane-targeted bactericidal activities of the compounds. The potent compound also showed tetracycline and amoxicillin encapsulation and sustained release profiles in the physiologically relevant medium. The tetracycline and amoxicillin-encapsulated lipid showed much higher antibacterial activities than the free antibiotics at similar concentrations, emphasizing the usefulness of the synergistic effect of sulfonium-based lipid and the antibiotics, signifying that the sulfonium lipid penetrated the bacterial membrane and increased the cellular uptake of the antibiotics. The potent lipid also showed therapeutic potential, as it is less toxic to mammalian cells (like HeLa and HaCaT cells) at concentrations higher than their minimum inhibitory concentration values against S. aureus, E. coli, and MRSA. Hence, the sulfonium-based lipid exemplifies a promising framework for assimilating various warheads, and provides a potent antibacterial material.

7.
Virus Res ; 292: 198223, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33166563

ABSTRACT

Newcastle disease is a severe clinical manifestation of avian species caused by Newcastle disease virus (NDV). Although several vaccination strategies are available to protect poultry against NDV infection, even then, outbreaks have been reported in the vaccinated birds. The lack of therapeutics against NDV makes the need for effective anti-viral drugs is of utmost importance. Lithium Chloride (LiCl) is a widely prescribed drug for the treatment of bipolar disorder, acute brain injuries, and chronic neurodegenerative diseases. Also, LiCl has been repurposed as an effective anti-viral drug for some viral infections. In the present work, we have investigated the efficacy of LiCl to inhibit NDV replication using in vitro, in ovo, and in vivo models. Our results collectively showed the modulation of NDV replication after the LiCl treatment. We also demonstrated that NDV induces endoplasmic reticulum stress (ER-stress), and a stress-inducible ER chaperone, glucose-regulating protein 78 (GRP78), was found to be over-expressed after NDV infection. Subsequently, the treatment of NDV infected cells with LiCl significantly reduced the transcript and protein levels of GRP78. Finally, we concluded that LiCl treatment protects the cells from ER-stress induced by the NDV infection.


Subject(s)
Antiviral Agents/administration & dosage , Endoplasmic Reticulum Stress/drug effects , Lithium Chloride/administration & dosage , Newcastle Disease/drug therapy , Newcastle Disease/immunology , Newcastle disease virus/drug effects , Poultry Diseases/drug therapy , Poultry Diseases/immunology , Animals , Chickens , Female , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/immunology , Male , Membrane Proteins/genetics , Membrane Proteins/immunology , Newcastle Disease/genetics , Newcastle Disease/virology , Newcastle disease virus/genetics , Newcastle disease virus/physiology , Poultry Diseases/virology , Virus Replication/drug effects , Virus Shedding/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...