Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 124(6): 1845-1859, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38242972

ABSTRACT

PURPOSE: Previous studies investigating sinusoidal exercise were not devoted to an analysis of its energetics and of the effects of fatigue. We aimed to determine the contribution of aerobic and anaerobic lactic metabolism to the energy balance and investigate the fatigue effects on the cardiorespiratory and metabolic responses to sinusoidal protocols, across and below critical power (CP). METHODS: Eight males (26.6 ± 6.2 years; 75.6 ± 8.7 kg; maximum oxygen uptake 52.8 ± 7.9 ml·min-1·kg-1; CP 218 ± 13 W) underwent exhausting sinusoidal cycloergometric exercises, with sinusoid midpoint (MP) at CP (CPex) and 50 W below CP (CP-50ex). Sinusoid amplitude (AMP) and period were 50 W and 4 min, respectively. MP, AMP, and time-delay (tD) between mechanical and metabolic signals of expiratory ventilation ( V ˙ E ), oxygen uptake ( V ˙ O 2 ), and heart rate ( f H ) were assessed sinusoid-by-sinusoid. Blood lactate ([La-]) and rate of perceived exertion (RPE) were determined at each sinusoid. RESULTS: V ˙ O 2 AMP was 304 ± 11 and 488 ± 36 ml·min-1 in CPex and CP-50ex, respectively. Asymmetries between rising and declining sinusoid phases occurred in CPex (36.1 ± 7.7 vs. 41.4 ± 9.7 s for V ˙ O 2 tD up and tD down, respectively; P < 0.01), with unchanged tDs. V ˙ O 2 MP and RPE increased progressively during CPex. [La-] increased by 2.1 mM in CPex but remained stable during CP-50ex. Anaerobic contribution was larger in CPex than CP-50ex. CONCLUSION: The lower aerobic component during CPex than CP-50ex associated with lactate accumulation explained lower V ˙ O 2 AMP in CPex. The asymmetries in CPex suggest progressive decline of muscle phosphocreatine concentration, leading to fatigue, as witnessed by RPE.


Subject(s)
Energy Metabolism , Exercise , Lactic Acid , Oxygen Consumption , Humans , Male , Adult , Oxygen Consumption/physiology , Lactic Acid/blood , Lactic Acid/metabolism , Energy Metabolism/physiology , Exercise/physiology , Muscle Fatigue/physiology , Heart Rate/physiology , Physical Exertion/physiology , Fatigue/physiopathology , Fatigue/metabolism
2.
Res Q Exerc Sport ; 91(1): 158-165, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31609180

ABSTRACT

Purpose: The current study investigated the role of quadriceps and gastrocnemii size and vastus lateralis and gastrocnemius medialis muscle architecture in peak-power and time-to-peak-power exerted in an all-out Wingate test. Twenty-one amateur cyclists were recruited. Methods: Quadriceps and gastrocnemii anatomical cross-sectional area (ACSA), and vastus lateralis and gastrocnemius medialis pennation angle and fascicle length were measured using ultrasound. Relative peak-power (normalized per body mass) and time-to-peak-power were measured during a 30s all-out test. Results: Relative peak-power was correlated with quadriceps ACSA (r = 0.896, p < .001), gastrocnemii ACSA (r = 0.811, p < .001), vastus lateralis (r = 0.787, p < .001) and gastrocnemius medialis pennation angle (r = 0.638, p < .003). Multiple regression revealed that quadriceps and gastrocnemii ACSA accounted for 85% (R2= 0.85) of peak-power variance. Time-to-peak-power showed very large (r = -0.868, p < .001) and large correlation (r = -0.680, p = .001) with VL and GM fascicle length, respectively. Multiple regression analysis revealed that VL fascicle length explained 75% (R2= 0.75) of the time-to-peak-power variance. Conclusions: Quadriceps and gastrocnemii ACSA largely explained relative peak-power in an all-out Wingate test. Vastus lateralis fascicle length was the main predictor of the time-to-peak-power. Muscle architecture characteristics seem to be involved in the power generating capacity.


Subject(s)
Muscle Strength/physiology , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Quadriceps Muscle/anatomy & histology , Quadriceps Muscle/physiology , Adult , Exercise Test , Humans , Lactic Acid/blood , Male , Muscle, Skeletal/diagnostic imaging , Quadriceps Muscle/diagnostic imaging , Ultrasonography , Young Adult
3.
Front Physiol ; 10: 727, 2019.
Article in English | MEDLINE | ID: mdl-31244682

ABSTRACT

Vascular endothelial function is a strong marker of cardiovascular health and it refers to the ability of the body to maintain the homeostasis of vascular tone. The endothelial cells react to mechanical and chemical stimuli modulating the smooth muscle cells relaxation. The extent of the induced vasodilation depends on the magnitude of the stimulus. During exercise, the peripheral circulation is mostly controlled by the endothelial cells response that increases the peripheral blood flow in body districts involved but also not involved with exercise. However, whether vascular adaptations occur also in the brachial artery as a result of isolated leg extension muscles (KE) training is still an open question. Repetitive changes in blood flow occurring during exercise may act as vascular training for vessels supplying the active muscle bed as well as for the vessels of body districts not directly involved with exercise. This study sought to evaluate whether small muscle mass (KE) training would induce improvements in endothelial function not only in the vasculature of the lower limb (measured at the femoral artery level in the limb directly involved with training), but also in the upper limb (measured at the brachial artery level in the limb not directly involved with training) as an effect of repetitive increments in the peripheral blood flow during training sessions. Ten young healthy participants (five females, and five males; age: 23 ± 3 years; stature: 1.70 ± 0.11 m; body mass: 66 ± 11 kg; BMI: 23 ± 1 kg ⋅ m-2) underwent an 8-week KE training study. Maximum work rate (MWR), vascular function and peripheral blood flow were assessed pre- and post-KE training by KE ergometer, flow mediated dilatation (FMD) in the brachial artery (non-trained limb), and by passive limb movement (PLM) in femoral artery (trained limb), respectively. After 8 weeks of KE training, MWR and PLM increased by 44% (p = 0.015) and 153% (p = 0.003), respectively. Despite acute increase in brachial artery blood flow during exercise occurred (+25%; p < 0.001), endothelial function did not change after training. Eight weeks of KE training improved endothelial cells response only in the lower limb (measured at the femoral artery level) directly involved with training, likely without affecting the endothelial response of the upper limb (measured at the brachial artery level) not involved with training.

SELECTION OF CITATIONS
SEARCH DETAIL
...