Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 10(1)2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30658503

ABSTRACT

Since the 1940s electrocorticography (ECoG) devices and, more recently, in the last decade, micro-electrocorticography (µECoG) cortical electrode arrays were used for a wide set of experimental and clinical applications, such as epilepsy localization and brain⁻computer interface (BCI) technologies. Miniaturized implantable µECoG devices have the advantage of providing greater-density neural signal acquisition and stimulation capabilities in a minimally invasive fashion. An increased spatial resolution of the µECoG array will be useful for greater specificity diagnosis and treatment of neuronal diseases and the advancement of basic neuroscience and BCI research. In this review, recent achievements of ECoG and µECoG are discussed. The electrode configurations and varying material choices used to design µECoG arrays are discussed, including advantages and disadvantages of µECoG technology compared to electroencephalography (EEG), ECoG, and intracortical electrode arrays. Electrode materials that are the primary focus include platinum, iridium oxide, poly(3,4-ethylenedioxythiophene) (PEDOT), indium tin oxide (ITO), and graphene. We discuss the biological immune response to µECoG devices compared to other electrode array types, the role of µECoG in clinical pathology, and brain⁻computer interface technology. The information presented in this review will be helpful to understand the current status, organize available knowledge, and guide future clinical and research applications of µECoG technologies.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 6030-3035, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441711

ABSTRACT

Sleep Apnea is a common sleeping disorder that affects over 25 million Americans. Due to the complex nature of sleep apnea, and the human body, neither an effective nor comfortable treatment option for sleep apnea has been developed. Accordingly, we describe a novel alternative to current sleep apnea therapies, including CPAP therapy. A comfortable device for treating sleep apnea incorporates a mask, a flexible hose and a chamber for collecting expired air containing CO2. A sensor detects apnea and a control system automatically adjusts the amount of rebreathed CO2 minimize apnea and also minimize arousal.


Subject(s)
Continuous Positive Airway Pressure , Sleep Apnea Syndromes , Arousal , Humans , Pressure
4.
J Med Biol Eng ; 37(4): 474-483, 2017.
Article in English | MEDLINE | ID: mdl-28867991

ABSTRACT

We introduce a novel diagnostic Visual Voiding Device (VVD), which has the ability to visually document urinary voiding events and calculate key voiding parameters such as instantaneous flow rate. The observation of the urinary voiding process along with the instantaneous flow rate can be used to diagnose symptoms of Lower Urinary Tract Dysfunction (LUTD) and improve evaluation of LUTD treatments by providing subsequent follow-up documentations of voiding events after treatments. The VVD enables a patient to have a urinary voiding event in privacy while a urologist monitors, processes, and documents the event from a distance. The VVD consists of two orthogonal cameras which are used to visualize urine leakage from the urethral meatus, urine stream trajectory, and its break-up into droplets. A third, lower back camera monitors a funnel topped cylinder where urine accumulates that contains a floater for accurate readings regardless of the urine color. Software then processes the change in level of accumulating urine in the cylinder and the visual flow properties to calculate urological parameters. Video playback allows for reexamination of the voiding process. The proposed device was tested by integrating a mass flowmeter into the setup and simultaneously measuring the instantaneous flow rate of a predetermined voided volume in order to verify the accuracy of VVD compared to the mass flowmeter. The VVD and mass flowmeter were found to have an accuracy of ±2 and ±3% relative to full scale, respectively. A VVD clinical trial was conducted on 16 healthy male volunteers ages 23-65.

5.
IEEE Trans Biomed Circuits Syst ; 11(5): 1123-1132, 2017 10.
Article in English | MEDLINE | ID: mdl-28809712

ABSTRACT

We present a wide frequency range, low cost, wireless intracranial pressure monitoring system, which includes an implantable passive sensor and an external reader. The passive sensor consists of two spiral coils and transduces the pressure change to a resonant frequency shift. The external portable reader reads out the sensor's resonant frequency over a wide frequency range (35 MHz-2.7 GHz). We propose a novel circuit topology, which tracks the system's impedance and phase change at a high frequency with low-cost components. This circuit is very simple and reliable. A prototype has been developed, and measurement results demonstrate that the device achieves a suitable measurement distance (>2 cm), sufficient sample frequency (>6 Hz), fine resolution, and good measurement accuracy for medical practice. Responsivity of this prototype is 0.92 MHz/mmHg and resolution is 0.028 mmHg. COMSOL specific absorption rate simulation proves that this system is safe. Considerations to improve the device performance have been discussed, which include the size of antenna, the power radiation, the Analog-to-digital converter (ADC) choice, and the signal processing algorithm.


Subject(s)
Intracranial Pressure , Prostheses and Implants , Wireless Technology , Algorithms , Analog-Digital Conversion , Humans , Signal Processing, Computer-Assisted
6.
Physiol Meas ; 38(9): R204-R252, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28820743

ABSTRACT

While public awareness of sleep related disorders is growing, sleep apnea syndrome (SAS) remains a public health and economic challenge. Over the last two decades, extensive controlled epidemiologic research has clarified the incidence, risk factors including the obesity epidemic, and global prevalence of obstructive sleep apnea (OSA), as well as establishing a growing body of literature linking OSA with cardiovascular morbidity, mortality, metabolic dysregulation, and neurocognitive impairment. The US Institute of Medicine Committee on Sleep Medicine estimates that 50-70 million US adults have sleep or wakefulness disorders. Furthermore, the American Academy of Sleep Medicine (AASM) estimates that more than 29 million US adults suffer from moderate to severe OSA, with an estimated 80% of those individuals living unaware and undiagnosed, contributing to more than $149.6 billion in healthcare and other costs in 2015. Although various devices have been used to measure physiological signals, detect apneic events, and help treat sleep apnea, significant opportunities remain to improve the quality, efficiency, and affordability of sleep apnea care. As our understanding of respiratory and neurophysiological signals and sleep apnea physiological mechanisms continues to grow, and our ability to detect and process biomedical signals improves, novel diagnostic and treatment modalities emerge. OBJECTIVE: This article reviews the current engineering approaches for the detection and treatment of sleep apnea. APPROACH: It discusses signal acquisition and processing, highlights the current nonsurgical and nonpharmacological treatments, and discusses potential new therapeutic approaches. MAIN RESULTS: This work has led to an array of validated signal and sensor modalities for acquiring, storing and viewing sleep data; a broad class of computational and signal processing approaches to detect and classify SAS disease patterns; and a set of distinctive therapeutic technologies whose use cases span the continuum of disease severity. SIGNIFICANCE: This review provides a current perspective of the classes of tools at hand, along with a sense of their relative strengths and areas for further improvement.


Subject(s)
Algorithms , Diagnostic Equipment , Sleep Apnea Syndromes/diagnosis , Sleep Apnea Syndromes/therapy , Humans , Signal Processing, Computer-Assisted
7.
Physiol Meas ; 38(8): R143-R182, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28489610

ABSTRACT

Measurement of intracranial pressure (ICP) can be invaluable in the management of critically ill patients. Cerebrospinal fluid is produced by the choroid plexus in the brain ventricles (a set of communicating chambers), after which it circulates through the different ventricles and exits into the subarachnoid space around the brain, where it is reabsorbed into the venous system. If the fluid does not drain out of the brain or get reabsorbed, the ICP increases, which may lead to brain damage or death. ICP elevation accompanied by dilatation of the cerebral ventricles is termed hydrocephalus, whereas ICP elevation accompanied by normal or small ventricles is termed idiopathic intracranial hypertension. OBJECTIVE: We performed a comprehensive literature review on how to measure ICP invasively and noninvasively. APPROACH: This review discusses the advantages and disadvantages of current invasive and noninvasive approaches. MAIN RESULTS: Invasive methods remain the most accurate at measuring ICP, but they are prone to a variety of complications including infection, hemorrhage and neurological deficits. Ventricular catheters remain the gold standard but also carry the highest risk of complications, including difficult or incorrect placement. Direct telemetric intraparenchymal ICP monitoring devices are a good alternative. Noninvasive methods for measuring and evaluating ICP have been developed and classified in five broad categories, but have not been reliable enough to use on a routine basis. These methods include the fluid dynamic, ophthalmic, otic, and electrophysiologic methods, as well as magnetic resonance imaging, transcranial Doppler ultrasonography (TCD), cerebral blood flow velocity, near-infrared spectroscopy, transcranial time-of-flight, spontaneous venous pulsations, venous ophthalmodynamometry, optical coherence tomography of retina, optic nerve sheath diameter (ONSD) assessment, pupillometry constriction, sensing tympanic membrane displacement, analyzing otoacoustic emissions/acoustic measure, transcranial acoustic signals, visual-evoked potentials, electroencephalography, skull vibrations, brain tissue resonance and the jugular vein. SIGNIFICANCE: This review provides a current perspective of invasive and noninvasive ICP measurements, along with a sense of their relative strengths, drawbacks and areas for further improvement. At present, none of the noninvasive methods demonstrates sufficient accuracy and ease of use while allowing continuous monitoring in routine clinical use. However, they provide a realizable ICP measurement in specific patients especially when invasive monitoring is contraindicated or unavailable. Among all noninvasive ICP measurement methods, ONSD and TCD are attractive and may be useful in selected settings though they cannot be used as invasive ICP measurement substitutes. For a sufficiently accurate and universal continuous ICP monitoring method/device, future research and developments are needed to integrate further refinements of the existing methods, combine telemetric sensors and/or technologies, and validate large numbers of clinical studies on relevant patient populations.


Subject(s)
Intracranial Pressure , Monitoring, Physiologic/methods , Animals , Humans , Monitoring, Physiologic/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...