Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AMB Express ; 12(1): 45, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35429254

ABSTRACT

Identification of resistant sources to Ascochyta blight (AB) has been considered as a main purpose in most chickpea breeding programs. Achievements to molecular markers related to resistance to Ascochyta rabiei allows selection programs to be developed more accurately and efficiently. The aim of this study was to investigate the applicability of a functional SNP in differentiating Iranian resistant cultivars to be used in selection programs. Amplification of SNP-containing fragment with specific primer pair and its sequencing resulted in tracking and determining the allelic pattern of SNP18, SNP18-2147, SNP18-2491 and SNP18-2554 loci belong to GSH118 gene in ILC263 (sensitive) and MCC133 (resistant) chickpea lines. Mutations in SNP18 and SNP18-2147 occur at the protein level at positions 499 and 554. Bioinformatics studies have shown that the GSH118 gene is a Lucien-rich repeat receptor kinases (LRR-RKs) and encodes a membrane protein which can be involved in recognizing microorganisms and initiating immune signaling pathways in plants. Additional studies to determine the function of this gene and its interaction with other proteins can be effective in gaining more knowledge about the molecular basis of resistance against AB.

2.
AMB Express ; 9(1): 195, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31802269

ABSTRACT

Introduction of a foreign gene coding for a pathogen resistant protein into the target plant and constitutive expression of Resistance (R) proteins may confer high level of resistance. However, genetic engineering could lead to reprogramming of molecular mechanisms that manage physiological behavior, which in turn could lead to undesired results. Therefore, using a pathogen-inducible synthetic promoter approach, response to pathogens could be more specific. Ascochyta rabiei is a destructive fungal pathogen in chickpea production. In this study, we analyzed the expression pattern of three synthetic promoters in response to pathogen and two defense hormones. We have tested three synthetic pathogen-inducible promoters designated as (1) synthetic promoter-D box-D box (SP-DD), (2) synthetic promoter-F element-F element (SP-FF) and (3) synthetic promoter-F element-F element-D box-D box (SP-FFDD) via Agrobacterium transient expression assay. The cis-acting element designated as 'D' is a 31 base pair sequence from the promoter of parsley pathogenesis-related gene 2 (PR2 gene) and the cis-acting element designated as 'F' is a 39 base pairs sequence from the promoter of Arabidopsis AtCMPG1 gene. We used mycelial extracts from two pathotypes of A. rabiei as elicitor to define the responsiveness of the promoters against pathogen. Plant phytohormones including salicylic acid and methyl jasmonate were also used to study the promoter sensitivity in plant signaling pathways. Our results showed that the SP-FF promoter was highly inducible to A. rabiei and methyl jasmonate as well, while the SP-DD promoter was more sensitive to salicylic acid. The SP-FFDD promoter was equally responsive to both pathotypes of A. rabiei which is probably due to the complex nature of box D cis-acting element.

SELECTION OF CITATIONS
SEARCH DETAIL
...