Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(18): e2317332121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38669180

ABSTRACT

Soil organic carbon (SOC) is vital for terrestrial ecosystems, affecting biogeochemical processes, and soil health. It is known that soil salinity impacts SOC content, yet the specific direction and magnitude of SOC variability in relation to soil salinity remain poorly understood. Analyzing 43,459 mineral soil samples (SOC < 150 g kg-1) collected across different land covers since 1992, we approximate a soil salinity increase from 1 to 5 dS m-1 in croplands would be associated with a decline in mineral soils SOC from 0.14 g kg-1 above the mean predicted SOC ([Formula: see text] = 18.47 g kg-1) to 0.46 g kg-1 below [Formula: see text] (~-430%), while for noncroplands, such decline is sharper, from 0.96 above [Formula: see text] = 35.96 g kg-1 to 4.99 below [Formula: see text] (~-620%). Although salinity's significance in explaining SOC variability is minor (<6%), we estimate a one SD increase in salinity of topsoil samples (0 to 7 cm) correlates with respective [Formula: see text] declines of ~4.4% and ~9.26%, relative to [Formula: see text] and [Formula: see text]. The [Formula: see text] decline in croplands is greatest in vegetation/cropland mosaics while lands covered with evergreen needle-leaved trees are estimated with the highest [Formula: see text] decline in noncroplands. We identify soil nitrogen, land cover, and precipitation Seasonality Index as the most significant parameters in explaining the SOC's variability. The findings provide insights into SOC dynamics under increased soil salinity, improving understanding of SOC stock responses to land degradation and climate warming.

2.
Colloids Surf B Biointerfaces ; 228: 113433, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37392521

ABSTRACT

Bacterial transport and retention likely depend on bacterial and soil surface properties, especially hydrophobicity. We used a controlled experimental setup to explore hydrophilic Escherichia coli (E. coli) and hydrophobic Rhodococcus erythropolis (PTCC1767) (R. erythropolis) transport through dry (- 15,000 cm water potential) and water saturated (0 cm water potential) wettable and water-repellent sand columns. A pulse of bacteria (1 × 108 CFU mL-1) and bromide (10 mmol L-1) moved through the columns under saturated flow (0 cm) for four pore volumes. A second bacteria and bromide pulse was then poured on the column surfaces and leaching was extended six more pore volumes. In dry wettable sand attachment dominated E. coli retention, whereas R. erythropolis was dominated by straining. Once wetted, the dominant retention mechanisms flipped between these bacteria. Attachment by either bacteria decreased markedly in water-repellent sand, so straining was the main retention mechanism. We explain this from capillary potential energy, which enhanced straining under the formation of water films at very early times (i.e., imbibing) and film thinning at much later times (i.e., draining). The interaction between the hydrophobicity of bacteria and soil on transport, retention and release mechanisms needs greater consideration in predictions.


Subject(s)
Escherichia coli , Sand , Porosity , Bromides , Hydrophobic and Hydrophilic Interactions , Soil , Water/chemistry
3.
ACS Omega ; 8(4): 3889-3895, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36743046

ABSTRACT

Advances in computational and image acquisition capabilities have made direct simulation of multiphase fluid flow through porous media possible. An example is application of volume of fluid modeling on images produced using the X-ray computed micro-tomography technique. Analysis of such high-resolution (both temporal and spatial) data sets provides new insights into pore-scale dynamics of previously less well-known processes. We present the outcomes of a high-resolution direct-simulation two-phase fluid displacement study performed on a series of five two-dimensional images of sandy porous media produced using erosion and dilation algorithms. This has enabled us to study the pore-scale dynamics systematically in models that are similar in connectivity but different in the morphology (pore sizes and aspect ratio). Our results show that the drainage and imbibition processes result in very distinct fluid displacement patterns in these models at the pore scale. As a result of drainage, the more open (eroded grains) models accommodate large oil clusters, while the tighter (dilated grains) models trap smaller oil clusters. The imbibition process is dominated by oil trapping in two ways: (i) bypassing larger oil clusters in the eroded models and (ii) local trapping of smaller clusters in the dilated models. This behavior is shown to arise from the relatively larger average aspect ratios of the dilated models compared to those of the eroded models. This promotes snap-off at pore throats (in competition with piston-like displacement), resulting in local trapping of the non-wetting phase. Both of these pore-scale trapping regimes seen here allow trapping of oil in as much as 50% of the pore space. Through the use of erosion and dilation operations, we show that a power-law relationship exists between the average pore size and the average grain size for these sandy media. This relationship is useful in designing engineered porous materials where pore sizes need to be estimated based on grain sizes.

4.
Chemosphere ; 311(Pt 1): 137023, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36330984

ABSTRACT

Microplastics (MPs) pollution is an emerging threat to soil ecosystems. The present study aims to investigate the impacts of MPs on soil water evaporation dynamics and patterns. Two series of laboratory experiments were conducted using sand particles and clay mixed with different MPs to investigate how evaporation dynamics and patterns are influenced by the presence of MPs. Quartz sand including 0, 0.75, 1.5, and 4.5% of Polyethylene (PE) and Polyvinylchloride (PVC) were used to evaluate MPs effects on evaporation rates while bentonite mixed with sand and 0, 0.75, 1.5, 4.5, 6, 8, and 10% of PE and PVC were used to investigate evaporation-induced cracking patterns. The experiments were conducted under controlled laboratory conditions in a climate chamber at constant ambient temperature. Our results suggest that the addition of MPs led to more water evaporation compared to the samples without MPs. Microscopic imaging and analysis enabled us to evaluate the possible MPs effects on the modification of soil characteristics and pore structure affecting the evaporation behavior. Moreover, although increasing MPs concentrations appeared to induce only minor effects on the crack morphology formed as a result of evaporation from the mixture of sand and bentonite, the type of MPs (PE vs PVC) had more notable effects on the drying-induced cracking patterns. The reported experimental data and analysis extend our physical understanding of the parameters influencing soil water evaporation in the presence of MPs.


Subject(s)
Microplastics , Plastics , Porosity , Sand , Polyvinyl Chloride , Bentonite , Ecosystem , Soil , Polyethylene , Water
5.
Nat Commun ; 12(1): 6663, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795219

ABSTRACT

Soil salinization has become one of the major environmental and socioeconomic issues globally and this is expected to be exacerbated further with projected climatic change. Determining how climate change influences the dynamics of naturally-occurring soil salinization has scarcely been addressed due to highly complex processes influencing salinization. This paper sets out to address this long-standing challenge by developing data-driven models capable of predicting primary (naturally-occurring) soil salinity and its variations in the world's drylands up to the year 2100 under changing climate. Analysis of the future predictions made here identifies the dryland areas of South America, southern and western Australia, Mexico, southwest United States, and South Africa as the salinization hotspots. Conversely, we project a decrease in the soil salinity of the drylands in the northwest United States, the Horn of Africa, Eastern Europe, Turkmenistan, and west Kazakhstan in response to climate change over the same period.

6.
ACS Omega ; 6(42): 28072-28083, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34723007

ABSTRACT

Knowledge of crystal nucleation and growth is paramount in understanding the geometry evolution of porous medium during reactive transport processes in geo-environmental studies. To predict transport properties precisely, it is necessary to delineate both the amount and location of nucleation and precipitation events in the spatiotemporal domain. This study investigates the precipitation of calcium carbonate crystals on a heterogeneous sandstone substrate as a function of chemical supersaturation, temperature, and time. The main objective was to evaluate solid formation under different boundary conditions when the solid-liquid interface plays a key role. New observations were made on the effect of primary and secondary substrates and the role of preferential precipitation locations on the rock surfaces. The results indicate that supersaturation and temperature determine the amount, distribution pattern, and growth rate of crystals. Substrate characteristics governed the nucleation, growth location, and evolution probability across time and space. Moreover, substrate surface properties introduced preferential sites that were occupied and covered with solids first. Our results highlight the complex dynamics induced by substrate surface properties on the spatial and temporal solute distribution, transport, and deposition. We accentuate the great potentials of the probabilistic nucleation model to describe mineral formation in a porous medium during reactive transport.

7.
Proc Natl Acad Sci U S A ; 117(52): 33017-33027, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318212

ABSTRACT

Knowledge of spatiotemporal distribution and likelihood of (re)occurrence of salt-affected soils is crucial to our understanding of land degradation and for planning effective remediation strategies in face of future climatic uncertainties. However, conventional methods used for tracking the variability of soil salinity/sodicity are extensively localized, making predictions on a global scale difficult. Here, we employ machine-learning techniques and a comprehensive set of climatic, topographic, soil, and remote sensing data to develop models capable of making predictions of soil salinity (expressed as electrical conductivity of saturated soil extract) and sodicity (measured as soil exchangeable sodium percentage) at different longitudes, latitudes, soil depths, and time periods. Using these predictive models, we provide a global-scale quantitative and gridded dataset characterizing different spatiotemporal facets of soil salinity and sodicity variability over the past four decades at a ∼1-km resolution. Analysis of this dataset reveals that a soil area of 11.73 Mkm2 located in nonfrigid zones has been salt-affected with a frequency of reoccurrence in at least three-fourths of the years between 1980 and 2018, with 0.16 Mkm2 of this area being croplands. Although the net changes in soil salinity/sodicity and the total area of salt-affected soils have been geographically highly variable, the continents with the highest salt-affected areas are Asia (particularly China, Kazakhstan, and Iran), Africa, and Australia. The proposed method can also be applied for quantifying the spatiotemporal variability of other dynamic soil properties, such as soil nutrients, organic carbon content, and pH.

8.
Soft Matter ; 16(36): 8345-8351, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32966530

ABSTRACT

In this work, we investigated the effect of the suspension properties on the drying dynamics and the resulting film peeling instability. To do so, a comprehensive series of experiments were conducted using drops of aqueous mixtures of colloidal silica dispersions and polyethylene oxide (PEO) additives. Time-lapse digital microscope images of the evaporating droplets show that film peeling can be discouraged and eventually eliminated with an increase in PEO concentration and molecular weight. This is due to the additives modifying the suspension properties which in turn modify the drying front length across the evaporating surface. Our result extends the understanding of the physics of film failure which is relevant information for various industrial processes such as in inkjet printing and coating applications.

9.
Sci Total Environ ; 703: 134718, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31734504

ABSTRACT

River flow reductions as a result of agricultural withdrawals and climate change are rapidly desiccating endorheic lakes, increasing their salinity and affecting the bio-diversity and human wellbeing in the surrounding areas. Here we present a new framework to guide eco-hydrological restoration of saline lakes and build their resilience to climate change by optimizing agricultural land use and related water withdrawals. The framework involves four steps: 1. selection of global circulation models for the basin under study; 2. establishment of a hydrological balance over the lake's area to estimate the amount of water required for its restoration; 3. water allocation modeling to determine the water available for restoration and allocation of the remaining water across different users in the lake's basin; and 4. basin-scale optimization of land use and cropping patterns subject to water availability. We illustrated the general applicability of the framework through the case of the second largest (by volume) hyper-saline lake globally, Lake Urmia, which lost 96% of its volume in only 20 years, primarily as a result of upstream water withdrawals. Through the application of the framework, we estimated the amount of water needed to restore the lake, either fully or partially, and proposed a sustainable land-use strategy, while protect farmers' income in the basin. Considering future climate change projections under two representative concentration pathways (RCP) 4.5 and 8.5, we found that an average annual surface inflow of 3,648 Mm3 (∼70% increase in RCP 4.5) and 3,692 Mm3 (∼73% increase in RCP 8.5) would be required to restore the lake by 2050, respectively. This would require the respective conversion of 95,600 ha and 133,687 ha of irrigated land to rain-fed cropland or grassland across the basin by 2050. The proposed framework can be used for building resilience to climate change and mitigating human-induced threats to other declining saline lakes.

10.
J Colloid Interface Sci ; 552: 464-475, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31151023

ABSTRACT

There has recently been renewed interest in understanding the physics of foam flow in permeable media. As for Newtonian flows in fractures, the heterogeneity of local apertures in natural fractures is expected to strongly impact the spatial distribution of foam flow. Although several experimental studies have been previously performed to study foam flow in fractured media, none of them has specifically addressed that impact for parallel flow in a realistic fracture geometry and its consequences for the foam's in situ shear viscosity and bubble morphologies. To do so, a comprehensive series of single-phase experiments have been performed by injecting pre-generated foams with six different qualities at a constant flow rate through a replica of a Vosges sandstone fracture of well-characterized aperture map. These measurements were compared to measurements obtained in a Hele-Shaw (i.e., smooth) fracture of identical hydraulic aperture. The results show that fracture wall roughness strongly increases the foam's apparent viscosity and shear rate. Moreover, foam bubbles traveling in regions of larger aperture exhibit larger velocity, size, a higher coarsening rate, and are subjected to a higher shear rate. This study also presents the first in situ measurement of foam bubbles velocities in fracture geometry, and provides hints towards measuring the in situ rheology of foam in a rough fracture from the velocity maps, for various imposed mean flow rates. These findings echo the necessity of considering fracture wall when predicting the pressure drop through the fracture and the effective viscosity, as well as in situ rheology, of the foam.

11.
Sci Rep ; 9(1): 3377, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30833590

ABSTRACT

This study provides a pore-scale investigation of two-phase flow dynamics during primary drainage in a realistic heterogeneous rock sample. Using the lattice Boltzmann (LB) method, a series of three-dimensional (3D) immiscible displacement simulations are conducted and three typical flow patterns are identified and mapped on the capillary number (Ca)-viscosity ratio(M) phase diagram. We then investigate the effect of the viscosity ratio and capillary number on fluid saturation patterns and displacement stability in Tuscaloosa sandstone, which is taken from the Cranfield site. The dependence of the evolution of saturation, location of the displacement front, 3D displacement patterns and length of the center of mass of the invading fluid on the viscosity ratio and capillary number have been delineated. To gain a quantitative insight into the characteristics of the invasion morphology in 3D porous media, the fractal dimension Df of the non-wetting phase displacement patterns during drainage has been computed for various viscosity ratios and capillary numbers. The logarithmic dependence of Df on invading phase saturation appears to be the same for various capillary numbers and viscosity ratios and follows a universal relation.

12.
Sci Rep ; 8(1): 15729, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30356141

ABSTRACT

Wettability, or preferential affinity of a fluid to a solid substrate in the presence of another fluid, plays a critical role in the statics and dynamics of fluid-fluid displacement in porous media. The complex confined geometry of porous media, however, makes upscaling of microscopic wettability to the macroscale a nontrivial task. Here, we elucidate the contribution of pore geometry in controlling the apparent wettability characteristics of a porous medium. Using direct numerical simulations of fluid-fluid displacement, we study the reversal of interface curvature in a single converging-diverging capillary, and demonstrate the co-existence of concave and convex interfaces in a porous medium-a phenomenon that we also observe in laboratory micromodel experiments. We show that under intermediate contact angles the sign of interface curvature is strongly influenced by the pore geometry. We capture the interplay between surface chemical properties and pore geometry in the form of a dimensionless quantity, the apparent wettability number, which predicts the conditions under which concave and convex interfaces co-exist. Our findings advance the fundamental understanding of wettability in confined geometries, with implications to macroscopic multiphase-flow processes in porous media, from fuel cells to enhanced oil recovery.

13.
Sci Rep ; 8(1): 10731, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30013231

ABSTRACT

Increasing salinity in groundwater and soil poses a threat to water and land resources. With the expectation of major changes to the hydrological cycle through climate change, the need for understanding the fundamental processes governing solute transport through soil has grown significantly. We provide experimentally verified insights into the influence of particle size distribution on solute transport in porous media during evaporation at the pore- and macro-scales. To do so, we utilized four-dimensional (space plus time) synchrotron X-ray tomography for iodine k-edge dual energy imaging to obtain solute concentration profiles in every single pore during saline water evaporation from coarse- and fine-grained sands. Close to the surface of the coarse-grained sand significantly higher salt concentrations were observed when compared to fine-grained sand with the same porosity under similar cumulative evaporative mass losses. The physics behind this behaviour was delineated using the recorded data with high spatial and temporal resolutions. Moreover, the measured data enabled us to quantify the variations of the effective dispersion coefficient during evaporation and how it is influenced by the particle size distribution. We show that, contrary to common assumption in modelling of solute transport during evaporation, the effective dispersion coefficient varies as a function of liquid saturation and the length of the invaded zone during evaporation from porous media, and that it increases as liquid saturation decreases.

14.
Proc Natl Acad Sci U S A ; 115(19): 4833-4838, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29686067

ABSTRACT

Finger-like protrusions that form along fluid-fluid displacement fronts in porous media are often excited by hydrodynamic instability when low-viscosity fluids displace high-viscosity resident fluids. Such interfacial instabilities are undesirable in many natural and engineered displacement processes. We report a phenomenon whereby gradual and monotonic variation of pore sizes along the front path suppresses viscous fingering during immiscible displacement, that seemingly contradicts conventional expectation of enhanced instability with pore size variability. Experiments and pore-scale numerical simulations were combined with an analytical model for the characteristics of displacement front morphology as a function of the pore size gradient. Our results suggest that the gradual reduction of pore sizes act to restrain viscous fingering for a predictable range of flow conditions (as anticipated by gradient percolation theory). The study provides insights into ways for suppressing unwanted interfacial instabilities in porous media, and provides design principles for new engineered porous media such as exchange columns, fabric, paper, and membranes with respect to their desired immiscible displacement behavior.

15.
Sci Rep ; 7(1): 4584, 2017 07 04.
Article in English | MEDLINE | ID: mdl-28676665

ABSTRACT

Multiphase flow in porous media is important in a number of environmental and industrial applications such as soil remediation, CO2 sequestration, and enhanced oil recovery. Wetting properties control flow of immiscible fluids in porous media and fluids distribution in the pore space. In contrast to the strong and weak wet conditions, pore-scale physics of immiscible displacement under intermediate-wet conditions is less understood. This study reports the results of a series of two-dimensional high-resolution direct numerical simulations with the aim of understanding the pore-scale dynamics of two-phase immiscible fluid flow under intermediate-wet conditions. Our results show that for intermediate-wet porous media, pore geometry has a strong influence on interface dynamics, leading to co-existence of concave and convex interfaces. Intermediate wettability leads to various interfacial movements which are not identified under imbibition or drainage conditions. These pore-scale events significantly influence macro-scale flow behaviour causing the counter-intuitive decline in recovery of the defending fluid from weak imbibition to intermediate-wet conditions.

16.
J Colloid Interface Sci ; 490: 850-858, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28002773

ABSTRACT

Foams demonstrate great potential for displacing fluids in porous media which is applicable to a variety of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is due to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media. The presence of oil in porous media is detrimental to the stability of foams which can influence its success as a displacing fluid. In the present work, we have conducted a systematic series of experiments using a well-characterised porous medium manufactured by 3D printing technique to evaluate the influence of oil on the dynamics of foam displacement under different boundary conditions. The effects of the type of oil, foam quality and foam flow rate were investigated. Our results reveal that generation of stable foam is delayed in the presence of light oil in the porous medium compared to heavy oil. Additionally, it was observed that the dynamics of oil entrapment was dictated by the stability of foam in the presence of oil. Furthermore, foams with high gas fraction appeared to be less stable in the presence of oil lowering its recovery efficiency. Pore-scale inspection of foam-oil dynamics during displacement revealed formation of a less stable front as the foam quality increased, leading to less oil recovery. This study extends the physical understanding of oil displacement by foam in porous media and provides new physical insights regarding the parameters influencing this process.

17.
J Colloid Interface Sci ; 473: 34-43, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27042823

ABSTRACT

Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors.

18.
J Colloid Interface Sci ; 472: 34-43, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-26998787

ABSTRACT

Two-phase immiscible displacement in porous media is controlled by capillary and viscous forces when gravitational effects are negligible. The relative importance of these forces is quantified through the dimensionless capillary number Ca and the viscosity ratio M between fluid phases. When the displacing fluid is Newtonian, the effects of Ca and M on the displacement patterns can be evaluated independently. However, when the injecting fluids exhibit shear-thinning viscosity behaviour the values of M and Ca are interdependent. Under these conditions, the effects on phase entrapment and the general displacement dynamics cannot be dissociated. In the particular case of shear-thinning aqueous polymer solutions, the degree of interdependence between M and Ca is determined by the polymer concentration. In this work, two-phase immiscible displacement experiments were performed in micromodels, using shear-thinning aqueous polymer solutions as displacing fluids, to investigate the effect of polymer concentration on the relationship between Ca and M, the recovery efficiency, and the size distribution of the trapped non-wetting fluid. Our results show that the differences in terms of magnitude and distribution of the trapped phase are related to the polymer concentration which influences the values of Ca and M.

19.
J Colloid Interface Sci ; 462: 288-96, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26473278

ABSTRACT

The relative immobility of foam in porous media suppresses the formation of fingers during oil displacement leading to a more stable displacement which is desired in various processes such as Enhanced Oil Recovery (EOR) or soil remediation practices. Various parameters may influence the efficiency of foam-assisted oil displacement such as properties of oil, the permeability and heterogeneity of the porous medium and physical and chemical characteristics of foam. In the present work, we have conducted a comprehensive series of experiments using customised Hele-Shaw cells filled with either water or oil to describe the effects of foam quality, permeability of the cell as well as the injection rate on the apparent viscosity of foam which is required to investigate foam displacement. Our results reveal the significant impact of foam texture and bubble size on the foam apparent viscosity. Foams with smaller bubble sizes have a higher apparent viscosity. This statement only applies (strictly speaking) when the foam quality is constant. However, wet foams with smaller bubbles may have lower apparent viscosity compared to dry foams with larger bubbles. Furthermore, our results show the occurrence of more stable foam-water fronts as foam quality decreases. Besides, the complexity of oil displacement by foam as well as its destabilizing effects on foam displacement has been discussed. Our results extend the physical understanding of foam-assisted liquid displacement in Hele-Shaw cell which is a step towards understanding the foam flow behaviour in more complex systems such as porous media.


Subject(s)
Microfluidic Analytical Techniques , Oils/chemistry , Water/chemistry , Equipment Failure Analysis , Microfluidic Analytical Techniques/instrumentation , Particle Size , Porosity , Surface Properties , Viscosity
20.
Eur Phys J E Soft Matter ; 38(6): 67, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26123771

ABSTRACT

A model, called pressure-driven growth, is analysed for propagation of a foam front through an oil reservoir during improved oil recovery using foam. Numerical simulations of the model predict, not only the distance over which the foam front propagates, but also the instantaneous front shape. A particular case is studied here in which the pressure used to drive the foam along is suddenly increased at a certain point in time. This transiently produces a concave front shape (seen from the domain ahead of the front): such concavities are known to be delicate to handle numerically. As time proceeds however, the front evolves back towards a convex shape, and this can be predicted by a long-time asymptotic analysis of the model. The increase in driving pressure is shown to be beneficial to the improved oil recovery process, because it gives a more uniform sweep of the oil reservoir by the foam.

SELECTION OF CITATIONS
SEARCH DETAIL
...