Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 16(11): 1237-1245, 2020 11.
Article in English | MEDLINE | ID: mdl-32839604

ABSTRACT

The natural antivitamin 2'-methoxy-thiamine (MTh) is implicated in the suppression of microbial growth. However, its mode of action and enzyme-selective inhibition mechanism have remained elusive. Intriguingly, MTh inhibits some thiamine diphosphate (ThDP) enzymes, while being coenzymatically active in others. Here we report the strong inhibition of Escherichia coli transketolase activity by MTh and unravel its mode of action and the structural basis thereof. The unique 2'-methoxy group of MTh diphosphate (MThDP) clashes with a canonical glutamate required for cofactor activation in ThDP-dependent enzymes. This glutamate is forced into a stable, anticatalytic low-barrier hydrogen bond with a neighboring glutamate, disrupting cofactor activation. Molecular dynamics simulations of transketolases and other ThDP enzymes identify active-site flexibility and the topology of the cofactor-binding locale as key determinants for enzyme-selective inhibition. Human enzymes either retain enzymatic activity with MThDP or preferentially bind authentic ThDP over MThDP, while core bacterial metabolic enzymes are inhibited, demonstrating therapeutic potential.


Subject(s)
Anti-Bacterial Agents/metabolism , Enzyme Inhibitors/metabolism , Thiamine/metabolism , Transketolase/antagonists & inhibitors , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Catalytic Domain , Coenzymes/metabolism , Drug Design , Enzyme Inhibitors/pharmacology , Escherichia coli/enzymology , Glutamic Acid/metabolism , Humans , Hydrogen Bonding , Kinetics , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship , Substrate Specificity , Thiamine/pharmacology , Thiamine Pyrophosphate/metabolism , Transketolase/genetics
2.
mBio ; 8(5)2017 10 10.
Article in English | MEDLINE | ID: mdl-29018119

ABSTRACT

Vitamin B1 (thiamin) is a cofactor for critical enzymatic processes and is scarce in surface oceans. Several eukaryotic marine algal species thought to rely on exogenous thiamin are now known to grow equally well on the precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), including the haptophyte Emiliania huxleyi Because the thiamin biosynthetic capacities of the diverse and ecologically important haptophyte lineage are otherwise unknown, we investigated the pathway in transcriptomes and two genomes from 30 species representing six taxonomic orders. HMP synthase is missing in data from all studied taxa, but the pathway is otherwise complete, with some enzymatic variations. Experiments on axenic species from three orders demonstrated that equivalent growth rates were supported by 1 µM HMP or thiamin amendment. Cellular thiamin quotas were quantified in the oceanic phytoplankter E. huxleyi using the thiochrome assay. E. huxleyi exhibited luxury storage in standard algal medium [(1.16 ± 0.18) × 10-6 pmol thiamin cell-1], whereas quotas in cultures grown under more environmentally relevant thiamin and HMP supplies [(2.22 ± 0.07) × 10-7 or (1.58 ± 0.14) × 10-7 pmol thiamin cell-1, respectively] were significantly lower than luxury values and prior estimates. HMP and its salvage-related analog 4-amino-5-aminomethyl-2-methylpyrimidine (AmMP) supported higher growth than thiamin under environmentally relevant supply levels. These compounds also sustained growth of the stramenopile alga Pelagomonas calceolata Together with identification of a salvage protein subfamily (TENA_E) in multiple phytoplankton, the results indicate that salvaged AmMP and exogenously acquired HMP are used by several groups for thiamin production. Our studies highlight the potential importance of thiamin pathway intermediates and their analogs in shaping phytoplankton community structure.IMPORTANCE The concept that vitamin B1 (thiamin) availability in seawater controls the productivity and structure of eukaryotic phytoplankton communities has been discussed for half a century. We examined B1 biosynthesis and salvage pathways in diverse phytoplankton species. These comparative genomic analyses as well as experiments show that phytoplankton thought to require exogenous B1 not only utilize intermediate compounds to meet this need but also exhibit stronger growth on these compounds than on thiamin. Furthermore, oceanic phytoplankton have lower cellular thiamin quotas than previously reported, and salvage of intermediate compounds is likely a key mechanism for meeting B1 requirements under environmentally relevant scenarios. Thus, several lines of evidence now suggest that availability of specific precursor molecules could be more important in structuring phytoplankton communities than the vitamin itself. This understanding of preferential compound utilization and thiamin quotas will improve biogeochemical model parameterization and highlights interaction networks among ocean microbes.


Subject(s)
Haptophyta/metabolism , Pyrimidines/metabolism , Seawater/chemistry , Seawater/microbiology , Thiamine/metabolism , Culture Media , Genome , Haptophyta/genetics , Haptophyta/growth & development , Metabolic Networks and Pathways , Oceans and Seas , Thiamine/biosynthesis , Transcriptome
3.
Biochemistry ; 55(7): 1135-48, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26813608

ABSTRACT

Bacimethrin (4-amino-5-hydroxymethyl-2-methoxypyrimidine), a natural product isolated from some bacteria, has been implicated as an inhibitor of bacterial and yeast growth, as well as in inhibition of thiamin biosynthesis. Given that thiamin biosynthetic enzymes could convert bacimethrin to 2'-methoxythiamin diphosphate (MeOThDP), it is important to evaluate the effect of this coenzyme analogue on thiamin diphosphate (ThDP)-dependent enzymes. The potential functions of MeOThDP were explored on five ThDP-dependent enzymes: the human and Escherichia coli pyruvate dehydrogenase complexes (PDHc-h and PDHc-ec, respectively), the E. coli 1-deoxy-D-xylulose 5-phosphate synthase (DXPS), and the human and E. coli 2-oxoglutarate dehydrogenase complexes (OGDHc-h and OGDHc-ec, respectively). Using several mechanistic tools (fluorescence, circular dichroism, kinetics, and mass spectrometry), it was demonstrated that MeOThDP binds in the active centers of ThDP-dependent enzymes, however, with a binding mode different from that of ThDP. While modest activities resulted from addition of MeOThDP to E. coli PDHc (6-11%) and DXPS (9-14%), suggesting that MeOThDP-derived covalent intermediates are converted to the corresponding products (albeit with rates slower than that with ThDP), remarkably strong activity (up to 75%) resulted upon addition of the coenzyme analogue to PDHc-h. With PDHc-ec and PDHc-h, the coenzyme analogue could support all reactions, including communication between components in the complex. No functional substitution of MeOThDP for ThDP was in evidence with either OGDH-h or OGDH-ec, shown to be due to tight binding of ThDP.


Subject(s)
Escherichia coli Proteins/metabolism , Models, Molecular , Pyruvate Dehydrogenase Complex/metabolism , Thiamine Pyrophosphate/analogs & derivatives , Thiamine Pyrophosphate/metabolism , Transferases/metabolism , Amino Acid Substitution , Apoenzymes/chemistry , Apoenzymes/genetics , Apoenzymes/metabolism , Binding, Competitive , Biocatalysis , Catalytic Domain , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Humans , Ketoglutarate Dehydrogenase Complex/chemistry , Ketoglutarate Dehydrogenase Complex/genetics , Ketoglutarate Dehydrogenase Complex/metabolism , Mutation , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Pyrimidines/chemistry , Pyruvate Dehydrogenase Complex/chemistry , Pyruvate Dehydrogenase Complex/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity , Transferases/chemistry
4.
Biochemistry ; 52(44): 7830-9, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24079939

ABSTRACT

Thiaminases are responsible for the degradation of thiamin and its metabolites. Two classes of thiaminases have been identified based on their three-dimensional structures and their requirements for a nucleophilic second substrate. Although the reactions of several thiaminases have been characterized, the physiological role of thiamin degradation is not fully understood. We have determined the three-dimensional X-ray structure of an inactive C143S mutant of Clostridium botulinum (Cb) thiaminase I with bound thiamin at 2.2 Å resolution. The C143S/thiamin complex provides atomic level details of the orientation of thiamin upon binding to Cb-thiaminase I and the identity of active site residues involved in substrate binding and catalysis. The specific roles of active site residues were probed by using site directed mutagenesis and kinetic analyses, leading to a detailed mechanism for Cb-thiaminase I. The structure of Cb-thiaminase I is also compared to the functionally similar but structurally distinct thiaminase II.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Clostridium botulinum/enzymology , Mutation, Missense , Thiamine/metabolism , Alkyl and Aryl Transferases/metabolism , Bacterial Proteins/metabolism , Catalytic Domain , Clostridium botulinum/chemistry , Clostridium botulinum/genetics , Crystallography, X-Ray , Kinetics , Models, Molecular , Protein Structure, Secondary , Thiamine/chemistry
5.
Org Biomol Chem ; 10(14): 2742-52, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22362491

ABSTRACT

The synthesis of stilbenoids and styryl carboxylic acids is accomplished with high E-stereoselectivity by olefination of aldehydes with thiophthalides under basic conditions. The olefination is highly atom-efficient as it only loses elemental sulfur during the reaction. This olefination, in conjunction with retro Kolbe-Schmitt reaction, allows facile synthesis of E-hydroxystilbenoids with minimal employment of protecting groups. This study also discloses two important findings: formation of i) 4-methylsulfanyl isocoumarins and ii) an 2-arylindenone.


Subject(s)
Benzofurans/chemistry , Stilbenes/chemistry , Styrenes/chemical synthesis , Sulfhydryl Compounds/chemistry , Aldehydes/chemistry , Alkenes/chemistry , Hydroxylation , Models, Molecular , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...