Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neurol Neurosurg ; 242: 108316, 2024 07.
Article in English | MEDLINE | ID: mdl-38762973

ABSTRACT

INTRODUCTION: Seizure disorders have often been found to be associated with corpus callosum injuries, but in most cases, they remain undiagnosed. Understanding the clinical, electrographic, and neuroradiological alternations can be crucial in delineating this entity. OBJECTIVE: This systematic review aims to analyze the effects of corpus callosum injuries on seizure semiology, providing insights into the neuroscientific and clinical implications of such injuries. METHODS: Adhering to the PRISMA guidelines, a comprehensive search across multiple databases, including PubMed/Medline, NIH, Embase, Cochrane Library, and Cross-ref, was conducted until September 25, 2023. Studies on seizures associated with corpus callosum injuries, excluding other cortical or sub-cortical involvements, were included. Machine learning (Random Forest) and deep learning (1D-CNN) algorithms were employed for data classification. RESULTS: Initially, 1250 articles were identified from the mentioned databases, and additional 350 were found through other relevant sources. Out of all these articles, 41 studies met the inclusion criteria, collectively encompassing 56 patients The most frequent clinical manifestations included generalized tonic-clonic seizures, complex partial seizures, and focal seizures. The most common callosal injuries were related to reversible splenial lesion syndrome and cytotoxic lesions. Machine learning and deep learning analyses revealed significant correlations between seizure types, semiological parameters, and callosal injury locations. Complete recovery was reported in the majority of patients post-treatment. CONCLUSION: Corpus callosum injuries have diverse impacts on seizure semiology. This review highlights the importance of understanding the role of the corpus callosum in seizure propagation and manifestation. The findings emphasize the need for targeted diagnostic and therapeutic strategies in managing seizures associated with callosal injuries. Future research should focus on expanding the data pool and exploring the underlying mechanisms in greater detail.


Subject(s)
Corpus Callosum , Machine Learning , Seizures , Humans , Corpus Callosum/diagnostic imaging , Seizures/physiopathology , Brain Injuries/complications , Brain Injuries/diagnostic imaging , Brain Injuries/physiopathology , Brain Injuries/diagnosis
2.
J Neurovirol ; 29(4): 492-506, 2023 08.
Article in English | MEDLINE | ID: mdl-37477790

ABSTRACT

Norovirus, a positive-stranded RNA virus, is one of the leading causes of acute gastroenteritis among all age groups worldwide. The neurological manifestations of norovirus are underrecognized, but several wide-spectrum neurological manifestations have been reported among infected individuals in the last few years. Our objective was to summarize the features of norovirus-associated neurological disorders based on the available literature. We used the existing PRISMA consensus statement. Data were collected from PubMed, EMBASE, Web of Science, and Scopus databases up to Jan 30, 2023, using pre-specified searching strategies. Twenty-one articles were selected for the qualitative synthesis. Among these, seven hundred and seventy-four patients with norovirus-associated neurological manifestations were reported. Most cases were seizure episodes, infection-induced encephalopathy, and immune-driven disorders. However, only a few studies have addressed the pathogenesis of norovirus-related neurological complications. The pathogenesis of these manifestations may be mediated by either neurotropism or aberrant immune-mediated injury, or both, depending on the affected system. Our review could help clinicians to recognize these neurological manifestations better and earlier while deepening the understanding of the pathogenesis of this viral infection.


Subject(s)
Brain Diseases , Caliciviridae Infections , Gastroenteritis , Norovirus , Humans , Norovirus/genetics , Caliciviridae Infections/complications , Gastroenteritis/complications , Seizures/complications , Brain Diseases/complications
3.
Chem Commun (Camb) ; 59(52): 8095-8098, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37293871

ABSTRACT

Our studies show Coomassie Brilliant Blue G-250 as a promising chemical chaperone that stabilises the α-helical native human insulin conformers, disrupting their aggregation. Furthermore, it also increases the insulin secretion. This multipolar effect coupled with its non-toxic nature could be useful for developing highly bioactive, targeted and biostable therapeutic insulin.


Subject(s)
Insulins , Rosaniline Dyes , Humans , Molecular Chaperones
4.
Langmuir ; 39(21): 7231-7248, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37094111

ABSTRACT

Misfolding and self-assembly of several intrinsically disordered proteins into ordered ß-sheet-rich amyloid aggregates emerged as hallmarks of several neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here we show how the naringenin-embedded nanostructure effectively retards aggregation and fibril formation of α-synuclein, which is strongly associated with the pathology of Parkinson's-like diseases. Naringenin is a polyphenolic compound from a plant source, and in our current investigation, we reported the one-pot synthesis of naringenin-coated spherical and monophasic gold nanoparticles (NAR-AuNPs) under optimized conditions. The average hydrodynamic diameter of the produced nanoparticle was ∼24 nm and showed a distinct absorption band at 533 nm. The zeta potential of the nanocomposite was ∼-22 mV and indicated the presence of naringenin on the surface of nanoparticles. Core-level XPS spectrum analysis showed prominent peaks at 84.02 and 87.68 eV, suggesting the zero oxidation state of metal in the nanostructure. Additionally, the peaks at 86.14 and 89.76 eV were due to the Au-O bond, induced by the hydroxyl groups of the naringenin molecule. The FT-IR analysis further confirmed strong interactions of the molecule with the gold nanosurface via the phenolic oxygen group. The composite surface was found to interact with monomeric α-synuclein and caused a red shift in the nanoparticle absorption band by ∼5 nm. The binding affinity of the composite nanostructure toward α-synuclein was in the micromolar range (Ka∼ 5.02 × 106 M-1) and may produce a protein corona over the gold nanosurface. A circular dichroism study showed that the nanocomposite can arrest the conformational fluctuation of the protein and hindered its transformation into a compact cross-ß-sheet conformation, a prerequisite for amyloid fibril formation. Furthermore, it was found that naringenin and its nanocomplex did not perturb the viability of neuronal cells. It thus appeared that engineering of the nanosurface with naringenin could be an alternative strategy in developing treatment approaches for Parkinson's and other diseases linked to protein conformation.


Subject(s)
Metal Nanoparticles , Parkinson Disease , Humans , alpha-Synuclein/chemistry , Parkinson Disease/etiology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Gold/chemistry , Spectroscopy, Fourier Transform Infrared , Metal Nanoparticles/chemistry , Amyloid/chemistry
5.
Phys Chem Chem Phys ; 24(36): 22250-22262, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36098073

ABSTRACT

Targeting amyloidosis requires high-resolution insight into the underlying mechanisms of amyloid aggregation. The sequence-specific intrinsic properties of a peptide or protein largely govern the amyloidogenic propensity. Thus, it is essential to delineate the structural motifs that define the subsequent downstream amyloidogenic cascade of events. Additionally, it is important to understand the role played by extrinsic factors, such as temperature or sample agitation, in modulating the overall energy barrier that prompts divergent nucleation events. Consequently, these changes can affect the fibrillation kinetics, resulting in structurally and functionally distinct amyloidogenic conformers associated with disease pathogenesis. Here, we have focused on human Islet Polypeptide (hIAPP) amyloidogenesis for the full-length peptide along with its N- and C-terminal fragments, under different temperatures and sample agitation conditions. This helped us to gain a comprehensive understanding of the intrinsic role of specific functional epitopes in the primary structure of the peptide that regulates amyloidogenesis and subsequent cytotoxicity. Intriguingly, our study involving an array of biophysical experiments and ex vivo data suggests a direct influence of external changes on the C-terminal fibrillating sequence. Furthermore, the observations indicate a possible collaborative role of this segment in nucleating hIAPP amyloidogenesis in a physiological scenario, thus making it a potential target for future therapeutic interventions.


Subject(s)
Amyloidosis , Islet Amyloid Polypeptide , Amyloid/chemistry , Amyloidogenic Proteins , Epitopes , Humans , Islet Amyloid Polypeptide/chemistry
6.
Mult Scler Relat Disord ; 51: 102917, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33845350

ABSTRACT

BACKGROUND: Spinal cord complications associated with coronavirus infectious disease of 2019 (COVID-19) are being widely reported. The purpose of this systematic review was to summarize so far available pieces of evidence documenting de novo novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) mediated spinal cord demyelinating diseases. Indeed, the spinal demyelinating disorders that have been reported in those patients who have suffered from COVID-19 rather than on the people already living with diagnosed or undiagnosed primary demyelinating disorders. METHODS: We used the existing PRISMA consensus statement. Data were collected from PubMed, NIH Litcovid, EMBASE and Cochrane library databases, as well as Pre-print servers (medRxiv, bioRxiv, and pre-preints.org), until September 10, 2020, using pre-specified searching strategies. RESULTS: The 21 selected articles were all case reports and included 11 (52%) men and 10 (48%) women. The mean age was of 46.7 ±â€¯18.0. The neurological manifestations included weakness, sensory deficit, autonomic dysfunction and ataxia. In most cases, elevated cerebrospinal fluid protein as well as lymphocytic pleocytosis were found. SARS-CoV-2 was detected in five (24%) patients, meanwhile in 13 (62%) patients, the testing was negative. Testing was not performed in two cases and, in one, data were unavailable. Nearly half of the cases (N = 9) were associated with isolated long extensive transverse myelitis (LETM), whereas a combination of both LETM and patchy involvement was found in two. Only five patients had isolated short segment involvement and two patchy involvement. Furthermore, concomitant demyelination of both brain and spine was reported in six patients. Concerning the prognosis, most of the patients improved and the mortality rate was low (N = 2, <10%). CONCLUSION: Spinal cord demyelination should be added to the plethora of immune mediated neurologic complications associated with COVID-19.


Subject(s)
COVID-19 , Communicable Diseases , Nervous System Diseases , Female , Humans , Male , SARS-CoV-2 , Spinal Cord
7.
J Neurovirol ; 27(1): 12-25, 2021 02.
Article in English | MEDLINE | ID: mdl-33367960

ABSTRACT

With the growing number of COVID-19 cases in recent times. significant set of patients with extra pulmonary symptoms has been reported worldwide. Here we venture out to summarize the clinical profile, investigations, and radiological findings among patients with SARS-CoV-2-associated meningoencephalitis in the form of a systemic review. This review was carried out based on the existing PRISMA (Preferred Report for Systematic Review and Meta analyses) consensus statement. The data for this review was collected from four databases: Pubmed/Medline, NIH Litcovid, Embase, and Cochrane library and Preprint servers up till 30 June 2020. Search strategy comprised of a range of keywords from relevant medical subject headings which includes "SARS-COV-2," "COVID-19," and "meningoencephalitis." All peer reviewed, case-control, case report, pre print articles satisfying our inclusion criteria were involved in the study. Quantitative data was expressed in mean ± SD, while the qualitative date in percentages. Paired t test was used for analysing the data based on differences between mean and respective values with a p < 0.05 considered to be statistically significant. A total of 61 cases were included from 25 studies after screening from databases and preprint servers, out of which 54 of them had completed investigation profile and were included in the final analysis. Clinical, laboratory findings, neuroimaging abnormalities, and EEG findings were analyzed in detail. This present review summarizes the available evidences related to the occurrence of meningoencephalitis in COVID-19.


Subject(s)
COVID-19/physiopathology , Cough/physiopathology , Fatigue/physiopathology , Fever/physiopathology , Meningoencephalitis/physiopathology , SARS-CoV-2/pathogenicity , Adult , Aged , Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19/diagnostic imaging , COVID-19/virology , Confusion/diagnostic imaging , Confusion/drug therapy , Confusion/physiopathology , Confusion/virology , Cough/diagnostic imaging , Cough/drug therapy , Cough/virology , Dyspnea/diagnostic imaging , Dyspnea/drug therapy , Dyspnea/physiopathology , Dyspnea/virology , Electroencephalography , Fatigue/diagnostic imaging , Fatigue/drug therapy , Fatigue/virology , Female , Fever/diagnostic imaging , Fever/drug therapy , Fever/virology , Humans , Hydroxychloroquine/therapeutic use , Male , Meningoencephalitis/diagnostic imaging , Meningoencephalitis/drug therapy , Meningoencephalitis/virology , Middle Aged , Neuroimaging , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
8.
J Thromb Thrombolysis ; 50(3): 567-579, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32627126

ABSTRACT

After the emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the last two decades, the world is facing its new challenge in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic with unprecedented global response. With the expanding domain of presentations in COVID-19 patients, the full range of manifestations is yet to unfold. The classical clinical symptoms for SARS-CoV-2 affected patients are dry cough, high fever, dyspnoea, lethal pneumonia whereas many patients have also been found to be associated with a few additional signs and clinical manifestations of isolated vasculopathy. Albeit a deep and profound knowledge has been gained on the clinical features and management of COVID-19, less clear association has been provided on SARS-CoV-2 mediated direct or indirect vasculopathy and its possible correlation with disease prognosis. The accumulative evidences suggest that novel coronavirus, apart from its primary respiratory confinement, may also invade vascular endothelial cells of several systems including cerebral, cardio-pulmonary as well as renal microvasculature, modulating multiple visceral perfusion indices. Here we analyse the phylogenetic perspective of SARS-CoV-2 along with other strains of ß-coronaviridae from a standpoint of vasculopathic derangements. Based on the existing case reports, literature and open data bases, we also analyse the differential pattern of vasculopathy related changes in COVID-19 positive patients. Besides, we debate the need of modulation in clinical approach from a hemodynamical point of view, as a measure towards reducing disease transmission, morbidity and mortality in SARS-CoV-2 affected patients.


Subject(s)
Betacoronavirus/pathogenicity , Blood Vessels/virology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Vascular Diseases/virology , Animals , Betacoronavirus/genetics , Betacoronavirus/immunology , Blood Coagulation , Blood Vessels/immunology , Blood Vessels/metabolism , Blood Vessels/physiopathology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/physiopathology , Cytokines/metabolism , Hemodynamics , Host-Pathogen Interactions , Humans , Inflammation Mediators/metabolism , Pandemics , Phylogeny , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Pneumonia, Viral/physiopathology , Prognosis , Risk Assessment , Risk Factors , SARS-CoV-2 , Vascular Diseases/immunology , Vascular Diseases/metabolism , Vascular Diseases/physiopathology
9.
Diabetes Metab Syndr ; 14(5): 1053-1060, 2020.
Article in English | MEDLINE | ID: mdl-32640417

ABSTRACT

BACKROUND AND AIMS: After the emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the last two decades, the world is facing its new challenge in SARS-CoV-2 pandemic with unfathomable global responses. The characteristic clinical symptoms for Coronavirus (COVID-19) affected patients are high fever, dry-cough, dyspnoea, lethal pneumonia whereas some patients also show additional neurological signs such as headache, nausea, vomiting etc. The accumulative evidences suggest that SARS-CoV-2 is not only confined within the respiratory tract but may also invade the central nervous system (CNS) and peripheral nervous system (PNS) inducing some fatal neurological diseases. Here, we analyze the phylogenetic perspective of SARS-CoV-2 with other strains of ß-Coronaviridae from a standpoint of neurological spectrum disorders. METHODOLOGY: A Pubmed/Medline, NIH Lit Covid, Cochrane library and some open data bases (BioRxiv, MedRxiv,preprint.org and others) search were carried out by using keywords relevant to our topic of discussion. The extracted literatures are scrutinized by the authors. RESULTS: 58 literatures including original articles, case reports and case series were selected by the authors to analyze the differential distribution of neurological impairments in COVID-19 positive patients along with angiotensin-converting enzyme-2 (ACE2) expression dynamics in neuronal and non-neuronal tissue in CNS and PNS with neuroinvasive potential of SARS-CoV2. CONCLUSION: We discuss the need for modulations in clinical approach from a neurological point of view, as a measure towards reducing disease transmission, morbidity and mortality in SARS-CoV2 positive patients.


Subject(s)
Betacoronavirus/isolation & purification , Central Nervous System/virology , Coronavirus Infections/epidemiology , Headache/virology , Pneumonia, Viral/epidemiology , COVID-19 , Central Nervous System/physiopathology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Global Health , Headache/physiopathology , Humans , Incidence , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...