Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(17)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34502844

ABSTRACT

(1) Background: Insects, which serve as model systems for many disciplines with their unique advantages, have not been extensively studied in gait research because of the lack of appropriate tools and insect models to properly study the insect gaits. (2) Methods: In this study, we present a gait analysis of grasshoppers with a closed-loop custom-designed motorized insect treadmill with an optical recording system for quantitative gait analysis. We used the eastern lubber grasshopper, a flightless and large-bodied species, as our insect model. Gait kinematics were recorded and analyzed by making three grasshoppers walk on the treadmill with various speeds from 0.1 to 1.5 m/s. (3) Results: Stance duty factor was measured as 70-95% and decreased as walking speed increased. As the walking speed increased, the number of contact legs decreased, and diagonal arrangement of contact was observed at walking speed of 1.1 cm/s. (4) Conclusions: This pilot study of gait analysis of grasshoppers using the custom-designed motorized insect treadmill with the optical recording system demonstrates the feasibility of quantitative, repeatable, and real-time insect gait analysis.


Subject(s)
Gait Analysis , Grasshoppers , Animals , Biomechanical Phenomena , Exercise Test , Gait , Pilot Projects , Walking
2.
IEEE Trans Biomed Circuits Syst ; 15(2): 326-338, 2021 04.
Article in English | MEDLINE | ID: mdl-33861705

ABSTRACT

Plantar cutaneous feedback plays an important role in stable and efficient gait, by modulating the activity of ankle dorsi- and plantar-flexor muscles. However, central and peripheral nervous system trauma often decrease plantar cutaneous feedback and/or interneuronal excitability in processing the plantar cutaneous feedback. In this study, we tested a fully implantable neural recording and stimulation system augmenting plantar cutaneous feedback. Electromyograms were recorded from the medial gastrocnemius muscle for stance phase detection, while biphasic stimulation pulses were applied to the distal-tibial nerve during the stance phase to augment plantar cutaneous feedback. A Bluetooth low energy and a Qi-standard inductive link were adopted for wireless communication and wireless charging, respectively. To test the operation of the system, one intact rat walked on a treadmill with the electrical system implanted into its back. Leg kinematics were recorded to identify the stance phase. Stimulation was applied, with a 250-ms onset delay from stance onset and 200-ms duration, resulting in the onset at 47.58 ± 2.82% of stance phase and the offset at 83.49 ± 4.26% of stance phase (Mean ± SEM). The conduction velocity of the compound action potential (31.2 m/s and 41.6 m/s at 1·T and 2·T, respectively) suggests that the evoked action potential was characteristic of an afferent volley for cutaneous feedback. We also demonstrated successful wireless charging and system reset functions. The experimental results suggest that the presented implantable system can be a valuable neural interface tool to investigate the effect of plantar cutaneous augmentation on gait in a rat model.


Subject(s)
Gait , Walking , Animals , Ankle Joint , Electric Stimulation , Electromyography , Muscle, Skeletal , Rats
3.
IEEE Trans Biomed Eng ; 68(9): 2798-2809, 2021 09.
Article in English | MEDLINE | ID: mdl-33497323

ABSTRACT

Ankle plantarflexion plays an important role in forward propulsion and anterior-posterior balance during locomotion. This component of gait is often critically impacted by neurotraumas and neurological diseases. We hypothesized that augmenting plantar cutaneous feedback, via closed-loop distal-tibial nerve stimulation, could increase ankle plantarflexion during walking. To test the hypothesis, one intact rat walked on a motorized treadmill with implanted electronic device and electrodes for closed-loop neural recording and stimulation. Constant-current biphasic electrical pulse train was applied to distal-tibial nerve, based on electromyogram recorded from the medial gastrocnemius muscle, to be timed with the stance phase. The stimulation current threshold to evoke plantar cutaneous feedback was set at 30 µA (1·T), based on compound action potential evoked by stimulation. The maximum ankle joint angle at plantarflexion, during the application of stimulation currents of 3.3·T and 6.6·T, respectively, was increased from 149.4° (baseline) to 165.4° and 161.6°. The minimum ankle joint angle at dorsiflexion was decreased from 59.4° (baseline) to 53.1°, during the application of stimulation currents of 3.3·T, but not changed by 6.6·T. Plantar cutaneous augmentation also changed other gait kinematic parameters. Stance duty factor was increased from 51.9% (baseline) to 65.7% and 64.0%, respectively, by 3.3·T and 6.6·T, primarily due to a decrease in swing duration. Cycle duration was consistently decreased by the stimulation. In the control trial after two stimulation trials, a strong after-effect was detected in overall gait kinematics as well as ankle plantarflexion, suggesting that this stimulation has the potential for producing long-term changes in gait kinematics.


Subject(s)
Ankle Joint , Ankle , Animals , Biomechanical Phenomena , Gait , Muscle, Skeletal , Rats , Walking
4.
Sci Adv ; 5(11): eaay0418, 2019 11.
Article in English | MEDLINE | ID: mdl-31701008

ABSTRACT

Traditionally, electronics have been designed with static form factors to serve designated purposes. This approach has been an optimal direction for maintaining the overall device performance and reliability for targeted applications. However, electronics capable of changing their shape, flexibility, and stretchability will enable versatile and accommodating systems for more diverse applications. Here, we report design concepts, materials, physics, and manufacturing strategies that enable these reconfigurable electronic systems based on temperature-triggered tuning of mechanical characteristics of device platforms. We applied this technology to create personal electronics with variable stiffness and stretchability, a pressure sensor with tunable bandwidth and sensitivity, and a neural probe that softens upon integration with brain tissue. Together, these types of transformative electronics will substantially broaden the use of electronics for wearable and implantable applications.


Subject(s)
Biosensing Techniques , Electronics , Wearable Electronic Devices , Animals , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Biosensing Techniques/standards , Elastic Modulus , Electronics/instrumentation , Electronics/methods , Humans , Male , Mice , Organ Specificity , Pressure , Sensitivity and Specificity , Stress, Mechanical , Temperature
5.
Sensors (Basel) ; 18(1)2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29267230

ABSTRACT

Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.


Subject(s)
Wireless Technology , Animals , Electrodes , Equipment Design , Neural Prostheses , Prostheses and Implants , Rabbits
6.
Article in English | MEDLINE | ID: mdl-24110511

ABSTRACT

An implantable wireless system was developed for recording muscle afferent activity and stimulating peripheral nerves with cuff electrodes. The proposed system was fabricated into the nerve cuff electrode, neural amplifier, neural stimulator, and wireless communication system with battery power. The nerve cuff electrode and neural amplifier were designed to improve the signal-to-interference ratio and signal-to-noise ratio. The wireless communication system was designed based on the medical implant communication service regulations to be suitable for implantation. The main function of this system was to extract muscle afferent activity from peripheral nerve during functional electrical stimulation. The cuff electrodes were chronically implanted on the sciatic nerve for recording and on the tibial and peroneal nerves for stimulation. When the extension and flexion movements of ankle joint were elicited from alternative electrical stimuli, the corresponding neural signals and ankle angles were recorded simultaneously. The muscle afferent activity was then extracted from the recorded neural signal through a simple blanking process. The experimental results showed that the ankle movements could be detected from the extracted muscle afferent activity.


Subject(s)
Neural Prostheses , Peroneal Nerve/physiology , Tibial Nerve/physiology , Wireless Technology/instrumentation , Afferent Pathways , Amplifiers, Electronic , Animals , Ankle Joint/physiology , Movement/physiology , Muscles/innervation , Muscles/physiology , Rabbits
7.
J Neurosci Methods ; 218(1): 55-71, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23685268

ABSTRACT

Control of the electrode offset voltage is an important issue related to the processes of functional electrical stimulation because excess charge accumulation over time damages both the tissue and the electrodes. This paper proposes a new feedback control scheme to regulate the electrode offset voltage to a predetermined reference value. The electrode offset voltage was continuously monitored using a sample-and-hold (S/H) circuit during stimulation and non-stimulation periods. The stimulation current was subsequently adjusted using a proportional-integral (PI) controller to minimise the error between the reference value and the electrode offset voltage. During the stimulation period, the electrode offset voltage was maintained through the S/H circuit, and the PI controller did not affect the amplitude of the stimulation current. In contrast, during the non-stimulation period, the electrode offset voltage was sampled through the S/H circuit and rapidly regulated through the PI controller. The experimental results obtained using a nerve cuff electrode showed that the electrode offset voltage was successfully controlled in terms of the performance specifications, such as the steady- and transient-state responses and the constraint of the controller output. Therefore, the proposed control scheme can potentially be used in various nerve stimulation devices and applications requiring control of the electrode offset voltage.


Subject(s)
Electric Stimulation Therapy/methods , Electrodes , Feedback , Electric Stimulation Therapy/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...