Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1064900, 2023.
Article in English | MEDLINE | ID: mdl-36793721

ABSTRACT

Objectives: To investigate whether and how inflammatory disease in the intestine influences the development of arthritis, considering that organ-to-organ communication is associated with many physiological and pathological events. Methods: First, mice were given drinking water containing dextran sodium sulfate (DSS) and then subjected to inflammatory arthritis. We compared the phenotypic symptoms between the cohoused and separately-housed mice. Next, donor mice were divided into DSS-treated and untreated groups and then cohoused with recipient mice. Arthritis was then induced in the recipients. The fecal microbiome was analyzed by 16S rRNA amplicon sequencing. We obtained type strains of the candidate bacteria and generated propionate-deficient mutant bacteria. Short-chain fatty acids were measured in the bacterial culture supernatant, serum, feces, and cecum contents using gas chromatography-mass spectrometry. Mice fed with candidate and mutant bacteria were subjected to inflammatory arthritis. Results: Contrary to expectations, the mice treated with DSS exhibited fewer symptoms of inflammatory arthritis. Intriguingly, the gut microbiota contributes, at least in part, to the improvement of colitis-mediated arthritis. Among the altered microorganisms, Bacteroides vulgatus and its higher taxonomic ranks were enriched in the DSS-treated mice. B. vulgatus, B. caccae, and B. thetaiotaomicron exerted anti-arthritic effects. Propionate production deficiency further prevented the protective effect of B. thetaiotaomicron on arthritis. Conclusions: We suggest a novel relationship between the gut and joints and an important role of the gut microbiota as communicators. Moreover, the propionate-producing Bacteroides species examined in this study may be a potential candidate for developing effective treatments for inflammatory arthritis.


Subject(s)
Colitis , Propionates , Mice , Animals , Propionates/pharmacology , RNA, Ribosomal, 16S/genetics , Colitis/pathology , Feces/microbiology , Bacteria/genetics , Bacteroides/genetics
2.
Immunology ; 168(3): 493-510, 2023 03.
Article in English | MEDLINE | ID: mdl-36183156

ABSTRACT

Not only are many Mycobacteria pathogens, but they can act as strong non-specific immunopotentiators, generating beneficial effects on the pathogenesis of some diseases. However, there has been no direct evidence of the effect of mycobacterial species on colorectal cancer (CRC). Herein, we showed that there may be a meaningful inverse correlation between the incidence of tuberculosis and CRC based on global statistics and that heat-killed Mycobacterial tuberculosis and live Mycobacterium bovis (Bacillus Calmette-Guérin strain) could ameliorate CRC development. In particular, using a faecal microbiota transplantation and a comparison between separate housing and cohousing, we demonstrated that the gut microbiota is involved in the protective effects. The microbial alterations can be elucidated by the modulation of antimicrobial activities including those of the Reg3 family genes. Furthermore, interleukin-22 production by T helper cells contributed to the anti-inflammatory activity of Mycobacteria. Our results revealed a novel role of Mycobacteria involving gut microbial alterations in dampening inflammation-associated CRC and an immunological mechanism underlying the interaction between microbes and host immunity.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Humans , BCG Vaccine
SELECTION OF CITATIONS
SEARCH DETAIL
...