Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Respir Res ; 25(1): 28, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38217012

ABSTRACT

BACKGORUND: Tissue-engineered tracheal grafts (TETG) can be recellularized by the host or pre-seeded with host-derived cells. However, the impact of airway disease on the recellularization process is unknown. METHODS: In this study, we determined if airway disease alters the regenerative potential of the human tracheobronchial epithelium (hTBE) obtained by brushing the tracheal mucosa during clinically-indicated bronchoscopy from 48 pediatric and six adult patients. RESULTS: Our findings revealed that basal cell recovery and frequency did not vary by age or region. At passage 1, all samples produced enough cells to cellularize a 3.5 by 0.5 cm2 graft scaffold at low cell density (~ 7000 cells/cm2), and 43.75% could cellularize a scaffold at high cell density (~ 100,000 cells/cm2). At passage 2, all samples produced the number of cells required for both recellularization models. Further evaluation revealed that six pediatric samples (11%) and three (50%) adult samples contained basal cells with a squamous basal phenotype. These cells did not form a polarized epithelium or produce differentiated secretory or ciliated cells. In the pediatric population, the squamous basal cell phenotype was associated with degree of prematurity (< 28 weeks, 64% vs. 13%, p = 0.02), significant pulmonary history (83% vs. 34%, p = 0.02), specifically with bronchopulmonary dysplasia (67% vs. 19%, p = 0.01), and patients who underwent previous tracheostomy (67% vs. 23%, p = 0.03). CONCLUSIONS: In summary, screening high-risk pediatric or adult population based on clinical risk factors and laboratory findings could define appropriate candidates for airway reconstruction with tracheal scaffolds. LEVEL OF EVIDENCE: Level III Cohort study.


Subject(s)
Carcinoma, Squamous Cell , Respiration Disorders , Adult , Infant, Newborn , Humans , Child , Cohort Studies , Epithelium , Epithelial Cells/pathology , Trachea/surgery , Trachea/pathology , Stem Cells
2.
Otolaryngol Head Neck Surg ; 170(1): 239-244, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37365963

ABSTRACT

OBJECTIVE: Decellularized tracheal grafts possess the biological cues necessary for tissue regeneration. However, conventional decellularization approaches to target the removal of all cell populations including chondrocytes lead to a loss of mechanical support. We have created a partially decellularized tracheal graft (PDTG) that preserves donor chondrocytes and the mechanical properties of the trachea. In this study, we measured PDTG chondrocyte retention with a murine microsurgical model. STUDY DESIGN: Murine in vivo time-point study. SETTING: Research Institute affiliated with Tertiary Pediatric Hospital. METHODS: PDTG was created using a sodium dodecyl sulfate protocol. Partially decellularized and syngeneic grafts were orthotopically implanted into female C57BL/6J mice. Grafts were recovered at 1, 3, and 6 months postimplant. Pre- and postimplant grafts were processed and analyzed via quantitative immunofluorescence. Chondrocytes (SOX9+, DAPI+) present in the host and graft cartilage was evaluated using ImageJ. RESULTS: Partial decellularization resulted in the maintenance of gross tracheal architecture with the removal of epithelial and submucosal structures on histology. All grafts demonstrated SOX9+ chondrocytes throughout the study time points. Chondrocytes in PDTG were lower at 6 months compared to preimplant and syngeneic controls. CONCLUSION: PDTG retained donor graft chondrocytes at all time points. However, PDTG exhibits a reduction in chondrocytes at 6 months. The impact of these histologic changes on cartilage extracellular matrix regeneration and repair remains unclear.


Subject(s)
Chondrocytes , Trachea , Humans , Child , Female , Mice , Animals , Chondrocytes/transplantation , Trachea/surgery , Tissue Engineering/methods , Mice, Inbred C57BL , Cartilage/transplantation , Tissue Scaffolds/chemistry
3.
Bioeng Transl Med ; 8(5): e10525, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37693070

ABSTRACT

There is currently no suitable autologous tissue to bridge large tracheal defects. As a result, no standard of care exists for long-segment tracheal reconstruction. Tissue engineering has the potential to create a scaffold from allografts or xenografts that can support neotissue regeneration identical to the native trachea. Recent advances in tissue engineering have led to the idea of partial decellularization that allows for the creation of tracheal scaffolds that supports tracheal epithelial formation while preserving mechanical properties. However, the ability of partial decellularization to eliminate graft immunogenicity remains unknown, and understanding the immunogenic properties of partially decellularized tracheal grafts (PDTG) is a critical step toward clinical translation. Here, we determined that tracheal allograft immunogenicity results in epithelial cell sloughing and replacement with dysplastic columnar epithelium and that partial decellularization creates grafts that are able to support an epithelium without histologic signs of rejection. Moreover, allograft implantation elicits CD8+ T-cell infiltration, a mediator of rejection, while PDTG did not. Hence, we establish that partial decellularization eliminates allograft immunogenicity while creating a scaffold for implantation that can support spatially appropriate airway regeneration.

4.
NPJ Regen Med ; 8(1): 35, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37438368

ABSTRACT

Extensive tracheal injury or disease can be life-threatening but there is currently no standard of care. Regenerative medicine offers a potential solution to long-segment tracheal defects through the creation of scaffolds that support the generation of healthy neotissue. We developed decellularized tracheal grafts (PDTG) by removing the cells of the epithelium and lamina propria while preserving donor cartilage. We previously demonstrated that PDTG support regeneration of host-derived neotissue. Here, we use a combination of microsurgical, immunofluorescent, and transcriptomic approaches to compare PDTG neotissue with the native airway and surgical controls. We report that PDTG neotissue is composed of native tracheal cell types and that the neoepithelium and microvasculature persisted for at least 6 months. Vascular perfusion of PDTG was established within 2 weeks and the graft recruited multipotential airway stem cells that exhibit normal proliferation and differentiation. Hence, PDTG neotissue recapitulates the structure and function of the host trachea and has the potential to regenerate.

5.
Otolaryngol Head Neck Surg ; 169(5): 1241-1246, 2023 11.
Article in English | MEDLINE | ID: mdl-37313949

ABSTRACT

OBJECTIVE: Advancements in tissue-engineered tracheal replacement (TETR) show promise for the use of partially decellularized tracheal grafts (PDTG) to address critical gaps in airway management and reconstruction. In this study, aiming to leverage the immunoprivileged nature of cartilage to preserve tracheal biomechanics, we optimize PDTG for retention of native chondrocytes. STUDY DESIGN: Comparison in vivo murine study. SETTING: Research Institute affiliated with Tertiary Pediatric Hospital. METHODS: PDTG were created per a shortened decellularization protocol using sodium dodecyl sulfate, then biobanked via cryopreservation technique. Decellularization efficiency was characterized by DNA assay and histology. Viability and apoptosis of chondrocytes in preimplanted PDTG and biobanked native trachea (control) was assessed with live/dead and apoptosis assays. PDTG (N = 5) and native trachea (N = 6) were orthotopically implanted in syngeneic recipients for 1-month. At the endpoint, microcomputed tomography (micro-CT) was employed to interrogate graft patency and radiodensity in vivo. Vascularization and epithelialization were qualitatively analyzed using histology images following explant. RESULTS: PDTG exhibited complete decellularization of all extra-cartilaginous cells and reduced DNA content compared to control. Chondrocyte viability and nonapoptotic cell populations were improved utilizing biobanking and shorter decellularization time. All grafts remained patent. Evaluation of graft radiodensity at 1 month revealed elevation of Hounsfield units in both PDTG and native compared to host, with PDTG showing higher radiodensity than native. PDTG supported complete epithelialization and functional reendothelialization 1-month postimplantation. CONCLUSION: Optimizing PDTG chondrocyte viability is a key component to successful tracheal replacement. Ongoing research seeks to evaluate the acute and chronic immunogenicity of PDTG.


Subject(s)
Chondrocytes , Trachea , Humans , Child , Mice , Animals , Trachea/surgery , Biological Specimen Banks , X-Ray Microtomography , Tissue Engineering/methods , DNA , Tissue Scaffolds
6.
Laryngoscope ; 133(3): 512-520, 2023 03.
Article in English | MEDLINE | ID: mdl-35612419

ABSTRACT

OBJECTIVES/HYPOTHESIS: Partially decellularized tracheal scaffolds have emerged as a potential solution for long-segment tracheal defects. These grafts have exhibited regenerative capacity and the preservation of native mechanical properties resulting from the elimination of all highly immunogenic cell types while sparing weakly immunogenic cartilage. With partial decellularization, new considerations must be made about the viability of preserved chondrocytes. In this study, we propose a multimodal approach for quantifying chondrocyte viability for airway tissue engineering. METHODS: Tracheal segments (5 mm) were harvested from C57BL/6 mice, and immediately stored in phosphate-buffered saline at -20°C (PBS-20) or biobanked via cryopreservation. Stored and control (fresh) tracheal grafts were implanted as syngeneic tracheal grafts (STG) for 3 months. STG was scanned with micro-computed tomography (µCT) in vivo. STG subjected to different conditions (fresh, PBS-20, or biobanked) were characterized with live/dead assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and von Kossa staining. RESULTS: Live/dead assay detected higher chondrocyte viability in biobanked conditions compared to PBS-20. TUNEL staining indicated that storage conditions did not alter the proportion of apoptotic cells. Biobanking exhibited a lower calcification area than PBS-20 in 3-month post-implanted grafts. Higher radiographic density (Hounsfield units) measured by µCT correlated with more calcification within the tracheal cartilage. CONCLUSIONS: We propose a strategy to assess chondrocyte viability that integrates with vivo imaging and histologic techniques, leveraging their respective strengths and weaknesses. These techniques will support the rational design of partially decellularized tracheal scaffolds. LEVEL OF EVIDENCE: N/A Laryngoscope, 133:512-520, 2023.


Subject(s)
Chondrocytes , Tissue Engineering , Animals , Mice , Chondrocytes/transplantation , Tissue Engineering/methods , Biological Specimen Banks , X-Ray Microtomography , Mice, Inbred C57BL , Trachea/surgery , Trachea/transplantation , Tissue Scaffolds
7.
Laryngoscope Investig Otolaryngol ; 7(6): 2119-2125, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36544928

ABSTRACT

Objective: While airway epithelial biorepositories have established roles in the study of bronchial progenitor stem (basal) cells, the utility of a bank of tracheal basal cells from pediatric patients, who have or are suspected of having an airway disease, has not been established. In vitro study of these cells can enhance options for tracheal restoration, graft design, and disease modeling. Development of a functional epithelium in these settings is a key measure. The aim of this study was the creation a tracheal basal cell biorepository and assessment of recovered cells. Methods: Pediatric patients undergoing bronchoscopy were identified and endotracheal brush (N = 29) biopsies were collected. Cells were cultured using the modified conditional reprogramming culture (mCRC) method. Samples producing colonies by day 14 were passaged and cryopreserved. To explore differentiation potential, cells were thawed and differentiated using the air-liquid interface (ALI) method. Results: No adverse events were associated with biopsy collection. Of 29 brush biopsies, 16 (55%) were successfully cultured to passage 1/cryopreserved. Samples with higher initial cell yields were more likely to achieve this benchmark. Ten unique donors were then thawed for analysis of differentiation. The average age was 2.2 ± 2.2 years with five donors (50%) having laryngotracheal pathology. Nine donors (90%) demonstrated differentiation capacity at 21 days of culture, as indicated by detection of ciliated cells (ACT+) and mucous cells (MUC5B+). Conclusion: Pediatric tracheal basal cells can be successfully collected and cryopreserved. Recovered cells retain the ability to differentiate into epithelial cell types in vitro. Level of Evidence: Level 3.

8.
Laryngoscope ; 132(4): 737-746, 2022 04.
Article in English | MEDLINE | ID: mdl-34153127

ABSTRACT

OBJECTIVES/HYPOTHESIS: Tissue-engineered tracheal grafts (TETGs) offer a potential solution for repair of long-segment airway defects. However, preclinical and clinical TETGs have been associated with chronic inflammation and macrophage infiltration. Macrophages express great phenotypic heterogeneity (generally characterized as classically activated [M1] vs. alternatively activated [M2]) and can influence tracheal repair and regeneration. We quantified and characterized infiltrating host macrophages using mouse microsurgical tracheal replacement models. STUDY DESIGN: Translational research, animal model. METHODS: We assessed macrophage infiltration and phenotype in animals implanted with syngeneic tracheal grafts, synthetic TETGs, or partially decellularized tracheal scaffolds (DTSs). RESULTS: Macrophage infiltration was observed following tracheal replacement with syngeneic trachea. Both M1 and M2 macrophages were present in native trachea and increased during early tracheal repair (P = .014), with an M1/M2 ratio of 0.48 ± 0.15. In contrast, orthotopic implantation of synthetic TETGs resulted in a shift to M1 predominant macrophage phenotype with an increased M1/M2 ratio of 1.35 ± 0.41 by 6 weeks following implant (P = .035). Modulation of the synthetic scaffold with the addition of polyglycolic acid (PGA) resulted in a reduction of M1/M2 ratio due to an increase in M2 macrophages (P = .006). Using systemic macrophage depletion, the M1/M2 ratio reverted to native values in synthetic TETG recipients and was associated with an increase in graft epithelialization. Macrophage ratios seen in DTSs were similar to native values. CONCLUSIONS: M1 and M2 macrophages are present during tracheal repair. Poor epithelialization with synthetic TETG is associated with an elevation of the M1/M2 ratio. Macrophage phenotype can be altered with scaffold composition and host-directed systemic therapies. DTSs exhibit M1/M2 ratios similar to those seen in native trachea and syngeneic tracheal replacement. LEVEL OF EVIDENCE: NA Laryngoscope, 132:737-746, 2022.


Subject(s)
Macrophages , Trachea , Animals , Humans , Inflammation , Mice , Polyglycolic Acid , Regeneration , Trachea/transplantation
9.
J Tissue Eng ; 12: 20417314211017417, 2021.
Article in English | MEDLINE | ID: mdl-34164107

ABSTRACT

Decellularized tracheal scaffolds offer a potential solution for the repair of long-segment tracheal defects. However, complete decellularization of trachea is complicated by tracheal collapse. We created a partially decellularized tracheal scaffold (DTS) and characterized regeneration in a mouse model of tracheal transplantation. All cell populations except chondrocytes were eliminated from DTS. DTS maintained graft integrity as well as its predominant extracellular matrix (ECM) proteins. We then assessed the performance of DTS in vivo. Grafts formed a functional epithelium by study endpoint (28 days). While initial chondrocyte viability was low, this was found to improve in vivo. We then used atomic force microscopy to quantify micromechanical properties of DTS, demonstrating that orthotopic implantation and graft regeneration lead to the restoration of native tracheal rigidity. We conclude that DTS preserves the cartilage ECM, supports neo-epithelialization, endothelialization and chondrocyte viability, and can serve as a potential solution for long-segment tracheal defects.

10.
Laryngoscope ; 131(2): E340-E345, 2021 02.
Article in English | MEDLINE | ID: mdl-32521060

ABSTRACT

OBJECTIVES/HYPOTHESIS: The ideal trachea replacement would be a living graft that is genetically identical to the host, avoiding the need for immunosuppression. We have developed a mouse model of syngeneic tracheal transplant that results in long-term survival without graft stenosis or delayed healing. To understand how host cells contribute to tracheal transplant integration, we quantified the populations of host cells in the graft and native trachea following implant. STUDY DESIGN: Tracheal transplant, tracheal replacement, regenerative medicine, animal model. METHODS: Tracheal grafts were obtained from female C57BL/6 mice and orthotopically transplanted into syngeneic male recipients. Cohorts were euthanized on day 14, day 45, and day 90 post-transplantation. Host and graft tracheas were explanted and analyzed by histology. Male host cells were quantified using fluorescence in situ hybridization, and macrophages were quantified with immunofluorescence. RESULTS: Evidence of host-derived cells was found in the midgraft at the earliest time point (14 days). Host-derived cells transiently increased in the graft on day 45 and were predominantly found in the submucosa. By day 90, the population of host-derived cells population declined to a similar level on day 14. Macrophage infiltration of host and graft tissue was observed at all time points and was greatest on day 90. CONCLUSIONS: Tracheal graft integration occurs by way of subacute transient host-cell infiltration and is primarily inflammatory in nature. Host-cell contribution to the graft epithelium is limited. These data indicate that creation of living, nonimmunogenic tracheal graft could serve as a viable solution for long-segment tracheal defects. LEVEL OF EVIDENCE: 3 Laryngoscope, 131:E340-E345, 2021.


Subject(s)
Allografts/cytology , Graft Survival , Trachea/transplantation , Tracheal Stenosis/prevention & control , Animals , Disease Models, Animal , Humans , In Situ Hybridization, Fluorescence , Male , Mice , Spatio-Temporal Analysis , Trachea/cytology , Tracheal Stenosis/etiology , Transplantation, Homologous/methods
11.
Brain Behav ; 8(10): e01118, 2018 10.
Article in English | MEDLINE | ID: mdl-30239155

ABSTRACT

INTRODUCTION: Classic Charcot-Marie-Tooth (CMT) neuropathies including those with Schwann cell genetic defects exhibit a length-dependent process affecting the distal axon. Energy deprivation in the distal axon has been the proposed mechanism accounting for length-dependent distal axonal degeneration. We hypothesized that pyruvate, an intermediate glycolytic product, could restore nerve function, supplying lost energy to the distal axon. METHODS: To test this possibility, we supplied pyruvate to the drinking water of the Trembler-J (TrJ ) mouse and assessed efficacy based on histology, electrophysiology, and functional outcomes. Pyruvate outcomes were compared with untreated TrJ controls alone or adeno-associated virus mediated NT-3 gene therapy (AAV1.NT-3)/pyruvate combinatorial approach. RESULTS: Pyruvate supplementation resulted increased myelinated fiber (MF) densities and myelin thickness in sciatic nerves. Combining pyruvate with proven efficacy from AAV1.tMCK.NT-3 gene therapy provided additional benefits showing improved compound muscle action potential amplitudes and nerve conduction velocities compared to pyruvate alone cohort. The end point motor performance of both the pyruvate and the combinatorial therapy cohorts was better than untreated TrJ controls. In a unilateral sciatic nerve crush paradigm, pyruvate supplementation improved myelin-based outcomes in both regenerating and the contralateral uncrushed nerves. CONCLUSIONS: This proof of principle study demonstrates that exogenous pyruvate alone or as adjunct therapy in TrJ may have clinical implications and is a candidate therapy for CMT neuropathies without known treatment.


Subject(s)
Charcot-Marie-Tooth Disease/drug therapy , Myelin Sheath/drug effects , Pyruvic Acid/therapeutic use , Sciatic Nerve/drug effects , Animals , Axons/drug effects , Axons/pathology , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Disease Models, Animal , Mice , Myelin Proteins , Myelin Sheath/pathology , Pyruvic Acid/pharmacology , Schwann Cells/drug effects , Schwann Cells/pathology , Sciatic Nerve/pathology
12.
Gene Ther ; 25(2): 129-138, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29523879

ABSTRACT

Neurotrophin 3 (NT-3) has well-recognized effects on peripheral nerve and Schwann cells, promoting axonal regeneration and associated myelination. In this study, we assessed the effects of AAV.NT-3 gene therapy on the oxidative state of the neurogenic muscle from the TremblerJ (Tr J ) mice at 16 weeks post-gene injection and found that the muscle fiber size increase was associated with a change in the oxidative state of muscle fibers towards normalization of the fiber type ratio seen in the wild type. NT-3-induced fiber size increase was most prominent for the fast twitch glycolytic fiber population. These changes in the Tr J muscle were accompanied by increased phosphorylation levels of 4E-BP1 and S6 proteins as evidence of mTORC1 activation. In parallel, the expression levels of the mitochondrial biogenesis regulator PGC1α, and the markers of glycolysis (HK1 and PK1) increased in the TrJ muscle. In vitro studies showed that recombinant NT-3 can directly induce Akt/mTOR pathway activation in the TrkC expressing myotubes but not in myoblasts. In addition, myogenin expression levels were increased in myotubes while p75 NTR expression was downregulated compared to myoblasts, indicating that NT-3 induced myoblast differentiation is associated with mTORC1 activation. These studies for the first time have shown that NT-3 increases muscle fiber diameter in the neurogenic muscle through direct activation of mTOR pathway and that the fiber size increase is more prominent for fast twitch glycolytic fibers.


Subject(s)
Charcot-Marie-Tooth Disease/therapy , Dependovirus/genetics , Genetic Therapy , Muscle, Skeletal/pathology , Nerve Growth Factors/genetics , TOR Serine-Threonine Kinases/metabolism , Animals , Biomarkers/metabolism , Cell Line , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/pathology , Disease Models, Animal , Glycolysis , Mice , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
13.
Skelet Muscle ; 7(1): 27, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29241457

ABSTRACT

BACKGROUND: Previous studies in patients with limb-girdle muscular dystrophy type 2A (LGMD2A) have suggested that calpain-3 (CAPN3) mutations result in aberrant regeneration in muscle. METHODS: To gain insight into pathogenesis of aberrant muscle regeneration in LGMD2A, we used a paradigm of cardiotoxin (CTX)-induced cycles of muscle necrosis and regeneration in the CAPN3-KO mice to simulate the early features of the dystrophic process in LGMD2A. The temporal evolution of the regeneration process was followed by assessing the oxidative state, size, and the number of metabolic fiber types at 4 and 12 weeks after last CTX injection. Muscles isolated at these time points were further investigated for the key regulators of the pathways involved in various cellular processes such as protein synthesis, cellular energy status, metabolism, and cell stress to include Akt/mTORC1 signaling, mitochondrial biogenesis, and AMPK signaling. TGF-ß and microRNA (miR-1, miR-206, miR-133a) regulation were also assessed. Additional studies included in vitro assays for quantifying fusion index of myoblasts from CAPN3-KO mice and development of an in vivo gene therapy paradigm for restoration of impaired regeneration using the adeno-associated virus vector carrying CAPN3 gene in the muscle. RESULTS: At 4 and 12 weeks after last CTX injection, we found impaired regeneration in CAPN3-KO muscle characterized by excessive numbers of small lobulated fibers belonging to oxidative metabolic type (slow twitch) and increased connective tissue. TGF-ß transcription levels in the regenerating CAPN3-KO muscles were significantly increased along with microRNA dysregulation compared to wild type (WT), and the attenuated radial growth of muscle fibers was accompanied by perturbed Akt/mTORC1 signaling, uncoupled from protein synthesis, through activation of AMPK pathway, thought to be triggered by energy shortage in the CAPN3-KO muscle. This was associated with failure to increase mitochondria content, PGC-1α, and ATP5D transcripts in the regenerating CAPN3-KO muscles compared to WT. In vitro studies showed defective myotube fusion in CAPN3-KO myoblast cultures. Replacement of CAPN3 by gene therapy in vivo increased the fiber size and decreased the number of small oxidative fibers. CONCLUSION: Our findings provide insights into understanding of the impaired radial growth phase of regeneration in calpainopathy.


Subject(s)
Calpain/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/physiology , Organelle Biogenesis , Regeneration , AMP-Activated Protein Kinases/metabolism , Animals , Calpain/genetics , Cells, Cultured , Disease Models, Animal , Genetic Therapy , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/physiopathology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
14.
Hum Gene Ther ; 26(10): 647-56, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26076707

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene. It is the most common, severe childhood form of muscular dystrophy. We investigated an alternative to dystrophin replacement by overexpressing ITGA7 using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal muscle that, like the dystrophin-glycoprotein complex, links the extracellular matrix to the internal actin cytoskeleton. ITGA7 is expressed in DMD patients and overexpression does not elicit an immune response to the transgene. We delivered rAAVrh.74.MCK.ITGA7 systemically at 5-7 days of age to the mdx/utrn(-/-) mouse deficient for dystrophin and utrophin, a severe mouse model of DMD. At 8 weeks postinjection, widespread expression of ITGA7 was observed at the sarcolemma of multiple muscle groups following gene transfer. The increased expression of ITGA7 significantly extended longevity and reduced common features of the mdx/utrn(-/-) mouse, including kyphosis. Overexpression of α7 expression protected against loss of force following contraction-induced damage and increased specific force in the diaphragm and EDL muscles 8 weeks after gene transfer. Taken together, these results further support the use of α7 integrin as a potential therapy for DMD.


Subject(s)
Antigens, CD/genetics , Dystrophin/genetics , Integrin alpha Chains/genetics , Muscular Dystrophy, Animal/therapy , Muscular Dystrophy, Duchenne/therapy , Animals , Antigens, CD/administration & dosage , Antigens, CD/biosynthesis , Dependovirus , Disease Models, Animal , Dystrophin/deficiency , Gene Expression Regulation , Genetic Therapy/methods , Humans , Integrin alpha Chains/administration & dosage , Integrin alpha Chains/biosynthesis , Mice , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology
15.
Mol Ther ; 22(7): 1353-1363, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24762627

ABSTRACT

The spontaneous autoimmune peripheral polyneuropathy (SAPP) model in B7-2 knockout nonobese diabetic mice mimics a progressive and unremitting course of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). In this study, bone marrow-derived dendritic cells (DCs) were transduced to express vasoactive intestinal polypeptide (VIP) using a lentiviral vector (LV-VIP). These transduced DCs (LV-VIP-DCs) were then injected intravenously (i.v.) into 16-week-old (before disease onset) and 21-week-old (after disease onset) SAPP mice in order to prevent or attenuate the disease. Outcome measures included behavioral tests, clinical and histological scoring, electrophysiology, real-time PCR, flow cytometry analyses, and enzyme-linked immunosorbent assay. LV-VIP-DCs were recruited to the inflamed sciatic nerve and reduced the expression of inflammatory cytokines. A single injection of LV-VIP-DC delayed the onset of disease, stabilized, and attenuated clinical signs correlating with ameliorated behavioral functions, reduced nerve demyelination, and improved nerve conduction. This proof-of-principle study is an important step potentially leading to a clinical translational study using DCs expressing VIP in cases of CIDP refractory to standard immunosuppressive therapy.


Subject(s)
Dendritic Cells/metabolism , Dendritic Cells/physiology , Peripheral Nervous System Diseases/therapy , Polyneuropathies/therapy , Vasoactive Intestinal Peptide/metabolism , Animals , Cells, Cultured , Dendritic Cells/cytology , Male , Mice
16.
Hum Mol Genet ; 22(24): 4929-37, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23863459

ABSTRACT

Pharmacologic strategies have provided modest improvement in the devastating muscle-wasting disease, Duchenne muscular dystrophy (DMD). Pre-clinical gene therapy studies have shown promise in the mdx mouse model; however, studies conducted after disease onset fall short of fully correcting muscle strength or protecting against contraction-induced injury. Here we examine the treatment effect on muscle physiology in aged dystrophic mice with significant disease pathology by combining two promising therapies: micro-dystrophin gene replacement and muscle enhancement with follistatin, a potent myostatin inhibitor. Individual treatments with micro-dystrophin and follistatin demonstrated marked improvement in mdx mice but were insufficient to fully restore muscle strength and response to injury to wild-type levels. Strikingly, when combined, micro-dystrophin/follistatin treatment restored force generation and conferred resistance to contraction-induced injury in aged mdx mice. Pre-clinical studies with miniature dystrophins have failed to demonstrate full correction of the physiological defects seen in mdx mice. Importantly, the addition of a muscle enhancement strategy with delivery of follistatin in combination with micro-dystrophin gene therapy completely restored resistance to eccentric contraction-induced injury and improved force. Eccentric contraction-induced injury is a pre-clinical parameter relevant to the exercise induced injury that occurs in DMD patients, and herein, we demonstrate compelling evidence for the therapeutic potential of micro-dystrophin/follistatin combinatorial therapy.


Subject(s)
Dystrophin/genetics , Follistatin/genetics , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Animals , Dependovirus/genetics , Disease Models, Animal , Dystrophin/metabolism , Follistatin/metabolism , Gene Expression , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Mice , Mice, Inbred mdx , Muscle Contraction/genetics , Muscle Strength/genetics , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal , Muscular Dystrophy, Duchenne/therapy
17.
PLoS One ; 7(6): e39233, 2012.
Article in English | MEDLINE | ID: mdl-22720081

ABSTRACT

The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV) gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb) negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9). Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Vectors , Membrane Proteins/genetics , Muscle Proteins/genetics , Recombination, Genetic , Dysferlin , Humans
18.
Mol Ther ; 18(1): 109-17, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19904237

ABSTRACT

Animal models for Duchenne muscular dystrophy (DMD) have species limitations related to assessing function, immune response, and distribution of micro- or mini-dystrophins. Nonhuman primates (NHPs) provide the ideal model to optimize vector delivery across a vascular barrier and provide accurate dose estimates for widespread transduction. To address vascular delivery and dosing in rhesus macaques, we have generated a fusion construct that encodes an eight amino-acid FLAG epitope at the C-terminus of micro-dystrophin to facilitate translational studies targeting DMD. Intramuscular (IM) injection of AAV8.MCK.micro-dys.FLAG in the tibialis anterior (TA) of macaques demonstrated robust gene expression, with muscle transduction (50-79%) persisting for up to 5 months. Success by IM injection was followed by targeted vascular delivery studies using a fluoroscopy-guided catheter threaded through the femoral artery. Three months after gene transfer, >80% of muscle fibers showed gene expression in the targeted muscle. No cellular immune response to AAV8 capsid, micro-dystrophin, or the FLAG tag was detected by interferon-gamma (IFN-gamma) enzyme-linked immunosorbent spot (ELISpot) at any time point with either route. In summary, an epitope-tagged micro-dystrophin cassette enhances the ability to evaluate site-specific localization and distribution of gene expression in the NHP in preparation for vascular delivery clinical trials.


Subject(s)
Dystrophin/metabolism , Injections, Intra-Arterial/methods , Injections, Intramuscular/methods , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/therapy , Peptides/metabolism , Animals , Blotting, Western , Dependovirus/genetics , Dystrophin/genetics , Enzyme-Linked Immunosorbent Assay , Genetic Therapy , Genetic Vectors/genetics , Humans , Macaca mulatta , Mice , Mice, Inbred C57BL , Oligopeptides , Peptides/genetics
19.
DNA Seq ; 19(1): 62-7, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17852356

ABSTRACT

We have cloned the swine eNOS promoter and analyzed its function in newborn swine pulmonary artery endothelial cells (PAECs). Analysis of the 2.1 kb 5' flanking region revealed that the swine eNOS promoter is, like its counterparts in human and other species, a TATA-less promoter. The transcription start site, determined by 5' RLM-RACE, was located 62 bp upstream of the translation start codon. Promoter activity was demonstrated by transient transfection of 5' deletion promoter/luciferase constructs into swine PAECs, and indicated that the proximal region from -227 to -82 was necessary for basal promoter activity. Positive cis-regulatory elements were present from -227 to -1290, while negative cis-regulatory elements may be present from -1290 to -1926 bp. Electrophoretic mobility shift assay (EMSA) of the proximal region demonstrated that multiprotein complexes were formed in the conserved proximal region of the swine eNOS promoter and a novel Spl site at -68/-59 was involved in the formation of these complexes.


Subject(s)
Cloning, Molecular , Nitric Oxide Synthase Type III/genetics , Promoter Regions, Genetic/genetics , Sus scrofa/genetics , 5' Flanking Region/genetics , Animals , Animals, Newborn , Base Sequence , Cells, Cultured , Conserved Sequence , Humans , Mice , Molecular Sequence Data , Nitric Oxide Synthase Type III/physiology , Sequence Analysis, DNA , TATA Box/genetics , Transcription Initiation Site/physiology
20.
J Vasc Res ; 43(3): 229-37, 2006.
Article in English | MEDLINE | ID: mdl-16432304

ABSTRACT

The present study evaluated mechanical stretch-induced apoptosis in swine vascular smooth muscle cells (VSMC) of different phenotypes. We demonstrated that differentiated VSMC express a greater level of Bcl-2-associated death factor (BAD) and have a significant cell loss when exposed to mechanical stretch (10% elongation, 1 Hz) for 24 h. We further demonstrated that apoptosis was significantly increased only in differentiated VSMC exposed to mechanical stretch. To test the hypothesis that the intracellular level of BAD in VSMC determines its response to mechanical stretch-induced apoptosis, we examined whether BAD expression was upregulated by mechanical stretch-induced apoptosis and was associated with the increase in the apoptosis level of differentiated VSMC. When exposed to mechanical stretch, the expression of BAD in differentiated VSMC was elevated at 1 h and remained at higher levels during the application of stretch (24 h). In contrast, Bcl-2 expression was suppressed during the application of stretch. Moreover, the proapoptotic function of BAD was inhibited by overexpression of Bcl-2 through transient transfection of VSMC with pCEP4-Bcl-2 or incubation of VSMC with vascular epithelial growth factor. These results suggest that mechanical stretch-induced VSMC apoptosis is phenotype dependent. The higher levels of apoptosis of differentiated VSMC upon mechanical stretch were, at least in part, dependent on their intrinsic level of BAD.


Subject(s)
Apoptosis , Cell Differentiation , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle , Phenotype , Animals , Apoptosis/drug effects , Cell Proliferation , Cell Shape , Cells, Cultured , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Portal Vein , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Stress, Mechanical , Swine , Time Factors , Transfection , Vascular Endothelial Growth Factor A/pharmacology , bcl-Associated Death Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...