Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(8): e0287798, 2023.
Article in English | MEDLINE | ID: mdl-37607184

ABSTRACT

BACKGROUND: Wheat grain protein, zinc (Zn), and iron (Fe) content are important wheat qualities crucial for human nutrition and health worldwide. Increasing these three components simultaneously in wheat grains by a single gene came into the picture through NAM-B1 cloning. NAM-B1 gene and its association with the mentioned grain quality traits have been primarily studied in common and durum wheat and their progenitors T. dicoccum and T. dicoccoides. METHOD: In the present study, for the first time, 38 wheat accessions comprising ten hexaploids from five species and 28 tetraploids from nine species were evaluated in the field for two consecutive years. Additionally, the 582 first nucleotides of the NAM-B1 gene were examined. RESULT: The NAM-B1 gene was present in 21 tetraploids and five hexaploid accessions. Seven tetraploid accessions contained the wild-type allele (five T. dicoccum, one T. dicoccoides, and one T. ispahanicum) and fourteen the mutated allele with a 'T' insertion at position 11 in the open reading frame, causing a frameshift. In hexaploid wheat comprising the gene, only one accession of T. spelta contained the wild-type allele, and the rest resembled the insertion mutated type. In the two-year field experiment, eight accessions with the wild-type NAM-B1 allele had significantly higher protein, Zn and Fe grain content when compared to indel-type accessions. Additionally, these accessions exhibited a lower mean for seed-filling duration than all other accessions containing indel-type alleles. In terms of grain yield, 1,000-kernel weight, kernel diameter, and kernel length, T. dicoccum accessions having wild-type alleles were similar to the indel-type accessions over two years of evaluation. CONCLUSION: These findings further support the possibility of simultaneous improvement of wheat grain protein, Zn, and Fe content by a single gene crucial for human nutrition and health worldwide.


Subject(s)
Grain Proteins , Triticum , Humans , Triticum/genetics , Tetraploidy , Alleles , Edible Grain/genetics
2.
PLoS One ; 18(2): e0275412, 2023.
Article in English | MEDLINE | ID: mdl-36749785

ABSTRACT

Few prior efforts have been made to investigate the genetic potential of different subspecies of Triticum turgidum for drought tolerance and their quality-related traits compared with common wheat (Triticum aestivum) and to identify the association among agronomic, micronutrients, and quality-related traits, especially under climate change conditions. In this research, grain quality, technological properties of flour, and some agronomic traits were studied in 33 wheat genotypes from six different subspecies of Triticum turgidum along with three cultivars of Triticum aestivum in the field, applying a well-watering (WW) and a water stress (WS) environment during two growing seasons. A high degree of variation was observed among genotypes for all evaluated traits, demonstrating that selection for these traits would be successful. Consequences of water stress were manifested as declined DM, GY, and LASRC; and significantly increased GPC, K+/Na+, WAF, WSRC, SuSRC, and SCSRC compared to the well-watering condition. The reductions in the unextractable polymeric protein fraction and glutenin-to-gliadin ratio indicated a poorer grain yield quality, despite higher protein content. This study showed that the early-maturing genotypes had higher water absorption and pentosan, and therefore were more suitable for bread baking. In contrast, late-maturing genotypes are ideal for cookie and cracker production. Two subspecies of T. turgidum ssp. durum and T. turgidum ssp. dicoccum with high micronutrient densities and quality-related traits, and T. turgidum ssp. oriental due to having high values of grain protein content can be used to improve the quality of T. aestivum through cross-breeding programs. Based on the association of different traits with SRC values and other quality-related traits and PCA results, contrasting genotypes can be used to develop mapping populations for genome studies of grain quality and functional properties of flour in future studies.


Subject(s)
Tetraploidy , Triticum , Triticum/genetics , Droughts , Dehydration , Plant Breeding , Edible Grain/genetics
3.
Sci Rep ; 12(1): 20328, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36434080

ABSTRACT

This study aimed to examine the reaction of several wheat species with different ploidy levels to foliar application of zinc (Zn) and iron (Fe) under different water regimes. Thirty-five wheat genotypes, including nineteen tetraploids from ten different species, ten hexaploids from five species, and six diploids from three species, were evaluated in the field over two moisture regimes with the following four treatments: control, foliar Zn application, foliar Fe application, and foliar Zn + Fe application. The experiments were conducted according to a split-plot scheme in a randomized complete block design with two replications in each moisture regime. Water stress negatively affected all measured traits, except grain Zn and Fe content. Combined foliar application of Zn + Fe significantly increased yield and alleviated yield reduction caused by water stress. Applying Zn and Fe significantly increased both micronutrient content in grains under both moisture conditions. Tetra and hexaploid species yielded nearly four times as much grain as unimproved diploid species and were less affected by water stress. All ploidy levels responded almost similarly to Zn and Fe treatments, with the combined application being as effective as each element separately. The highest yield increase in response to combined application of Zn + Fe under the two moisture conditions and the highest grain Zn content in response to Zn application under water stress was observed in hexaploid wheat. Combined foliar application of Zn and Fe increases grain Zn and Fe and alleviates water stress's adverse effects on all wheat ploidy levels, making biofortification cost-effective.


Subject(s)
Trace Elements , Triticum , Zinc , Micronutrients/analysis , Dehydration , Plant Leaves/chemistry , Edible Grain/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...