Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Biomedicines ; 12(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38672135

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is a debilitating genetic disorder characterized by recurrent episodes of heterotopic ossification (HO) formation in muscles, tendons, and ligaments. FOP is caused by a missense mutation in the ACVR1 gene (activin A receptor type I), an important signaling receptor involved in endochondral ossification. The ACVR1R206H mutation induces increased downstream canonical SMAD-signaling and drives tissue-resident progenitor cells with osteogenic potential to participate in endochondral HO formation. In this article, we review aberrant ACVR1R206H signaling and the cells that give rise to HO in FOP. FOP mouse models and lineage tracing analyses have been used to provide strong evidence for tissue-resident mesenchymal cells as cellular contributors to HO. We assess how the underlying mutation in FOP disrupts muscle-specific dynamics during homeostasis and repair, with a focus on muscle-resident mesenchymal cells known as fibro-adipogenic progenitors (FAPs). Accumulating research points to FAPs as a prominent HO progenitor population, with ACVR1R206H FAPs not only aberrantly differentiating into chondro-osteogenic lineages but creating a permissive environment for bone formation at the expense of muscle regeneration. We will further discuss the emerging role of ACVR1R206H FAPs in muscle regeneration and therapeutic targeting of these cells to reduce HO formation in FOP.

2.
J Bone Miner Res ; 39(4): 382-398, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38477818

ABSTRACT

Single case studies of extraordinary disease resilience may provide therapeutic insight into conditions for which no definitive treatments exist. An otherwise healthy 35-year-old man (patient-R) with the canonical pathogenic ACVR1R206H variant and the classic congenital great toe malformation of fibrodysplasia ossificans progressiva (FOP) had extreme paucity of post-natal heterotopic ossification (HO) and nearly normal mobility. We hypothesized that patient-R lacked a sufficient post-natal inflammatory trigger for HO. A plasma biomarker survey revealed a reduction in total matrix metalloproteinase-9 (MMP-9) compared to healthy controls and individuals with quiescent FOP. Whole exome sequencing identified compound heterozygous variants in MMP-9 (c.59C > T, p.A20V and c.493G > A, p.D165N). Structural analysis of the D165N variant predicted both decreased MMP-9 secretion and activity that were confirmed by enzyme-linked immunosorbent assay and gelatin zymography. Further, human proinflammatory M1-like macrophages expressing either MMP-9 variant produced significantly less Activin A, an obligate ligand for HO in FOP, compared to wildtype controls. Importantly, MMP-9 inhibition by genetic, biologic, or pharmacologic means in multiple FOP mouse models abrogated trauma-induced HO, sequestered Activin A in the extracellular matrix (ECM), and induced regeneration of injured skeletal muscle. Our data suggest that MMP-9 is a druggable node linking inflammation to HO, orchestrates an existential role in the pathogenesis of FOP, and illustrates that a single patient's clinical phenotype can reveal critical molecular mechanisms of disease that unveil novel treatment strategies.


A healthy 35-year-old man (patient-R) with the classic fibrodysplasia ossificans progressiva (FOP) mutation and the congenital great toe malformation of FOP had extreme lack of heterotopic ossification (HO) and nearly normal mobility. We hypothesized that patient-R lacked a sufficient inflammatory trigger for HO. Blood tests revealed a reduction in the level of an inflammatory protein called matrix metalloproteinase-9 (MMP-9) compared to other individuals with FOP as well as healthy controls. DNA analysis in patient-R identified mutations in MMP-9, one of which predicted decreased activity of MMP-9 which was confirmed by further testing. Inflammatory cells (macrophages) expressing the MMP-9 mutations identified in patient-R produced significantly less Activin A, an obligate stimulus for HO in FOP. In order to determine if MMP-9 deficiency was a cause of HO prevention in FOP, we inhibited MMP-9 activity by genetic, biologic, or pharmacologic means in FOP mouse models and showed that MMP-9 inhibition prevented or dramatically decreased trauma-induced HO in FOP, locked-up Activin A in the extracellular matrix, and induced regeneration of injured skeletal muscle. Our data show that MMP-9 links inflammation to HO and illustrate that one patient's clinical picture can reveal critical molecular mechanisms of disease that unveil new treatment strategies.


Subject(s)
Activin Receptors, Type I , Matrix Metalloproteinase 9 , Myositis Ossificans , Adult , Animals , Humans , Male , Mice , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Activin Receptors, Type I/deficiency , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Myositis Ossificans/genetics , Myositis Ossificans/pathology , Myositis Ossificans/metabolism , Ossification, Heterotopic/pathology , Ossification, Heterotopic/genetics , Ossification, Heterotopic/metabolism
3.
JBMR Plus ; 7(12): e10821, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130748

ABSTRACT

Heterotopic ossification (HO) consists of extraskeletal bone formation. One form of HO is acquired and instigated by traumas or surgery, and another form is genetic and characterizes fibrodysplasia ossificans progressiva (FOP). Recently, we and others showed that activin A promotes both acquired and genetic HO, and in previous studies we found that the retinoid agonist palovarotene inhibits both HO forms in mice. Here, we asked whether palovarotene's action against HO may include an interference with endogenous activin A expression and/or function. Using a standard mouse model of acquired HO, we found that activin A and its encoding RNA (Inhba) were prominent in chondrogenic cells within developing HO masses in untreated mice. Single-cell RNAseq (scRNAseq) assays verified that Inhba expression characterized chondroprogenitors and chondrocytes in untreated HO, in addition to its expected expression in inflammatory cells and macrophages. Palovarotene administration (4 mg/kg/d/gavage) caused a sharp inhibition of both HO and amounts of activin A and Inhba transcripts. Bioinformatic analyses of scRNAseq data sets indicated that the drug had reduced interactions and cross-talk among local cell populations. To determine if palovarotene inhibited Inhba expression directly, we assayed primary chondrocyte cultures. Drug treatment inhibited their cartilaginous phenotype but not Inhba expression. Our data reveal that palovarotene markedly reduces the number of local Inhba-expressing HO-forming cell populations. The data broaden the spectrum of HO culprits against which palovarotene acts, accounting for its therapeutic effectiveness. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

4.
Biomolecules ; 13(7)2023 07 14.
Article in English | MEDLINE | ID: mdl-37509165

ABSTRACT

Although structurally similar to type II counterparts, type I or activin receptor-like kinases (ALKs) are set apart by a metastable helix-loop-helix (HLH) element preceding the protein kinase domain that, according to a longstanding paradigm, serves passive albeit critical roles as an inhibitor-to-substrate-binding switch. A single recurrent mutation in the codon of the penultimate residue, directly adjacent the position of a constitutively activating substitution, causes milder activation of ACVR1/ALK2 leading to sporadic heterotopic bone deposition in patients presenting with fibrodysplasia ossificans progressiva, or FOP. To determine the protein structural-functional basis for the gain of function, R206H mutant, Q207D (aspartate-substituted caALK2) and HLH subdomain-truncated (208 Ntrunc) forms were compared to one another and the wild-type enzyme through in vitro kinase and protein-protein interaction analyses that were complemented by signaling read-out (p-Smad) in primary mouse embryonic fibroblasts and Drosophila S2 cells. Contrary to the paradigm, the HLH subdomain actively suppressed the phosphotransferase activity of the enzyme, even in the absence of FKBP12. Unexpectedly, perturbation of the HLH subdomain elevated kinase activity at a distance, i.e., allosterically, at the ATP-binding and polypeptide-interacting active site cleft. Accessibility to polypeptide substrate (BMP Smad C-terminal tails) due to allosterically altered conformations of type I active sites within heterohexameric cytoplasmic signaling complexes-assembled noncanonically by activin-type II receptors extracellularly-is hypothesized to produce a gain of function of the R206H mutant protein responsible for episodic heterotopic ossification in FOP.


Subject(s)
Activin Receptors, Type I , Gain of Function Mutation , Animals , Mice , Activin Receptors/genetics , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Fibroblasts/metabolism , Mutation , Peptides/genetics
5.
J Bone Miner Res ; 38(9): 1364-1385, 2023 09.
Article in English | MEDLINE | ID: mdl-37329499

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is a rare human genetic condition characterized by altered skeletal development and extraskeletal bone formation. All cases of FOP are caused by mutations in the type I bone morphogenetic protein (BMP) receptor gene ACVR1 that result in overactivation of the BMP signaling pathway. Activation of the wild-type ACVR1 kinase requires assembly of a tetrameric type I and II BMP receptor complex followed by phosphorylation of the ACVR1 GS domain by type II BMP receptors. Previous studies showed that the FOP-mutant ACVR1-R206H required type II BMP receptors and presumptive glycine/serine-rich (GS) domain phosphorylation for overactive signaling. Structural modeling of the ACVR1-R206H mutant kinase domain supports the idea that FOP mutations alter the conformation of the GS domain, but it is unclear how this leads to overactive signaling. Here we show, using a developing zebrafish embryo BMP signaling assay, that the FOP-mutant receptors ACVR1-R206H and -G328R have reduced requirements for GS domain phosphorylatable sites to signal compared to wild-type ACVR1. Further, ligand-independent and ligand-dependent signaling through the FOP-mutant ACVR1 receptors have distinct GS domain phosphorylatable site requirements. ACVR1-G328R showed increased GS domain serine/threonine requirements for ligand-independent signaling compared to ACVR1-R206H, whereas it exhibited reduced serine/threonine requirements for ligand-dependent signaling. Remarkably, while ACVR1-R206H does not require the type I BMP receptor partner, Bmpr1, to signal, a ligand-dependent GS domain mutant of ACVR1-R206H could signal independently of Bmpr1 only when Bmp7 ligand was overexpressed. Of note, unlike human ACVR1-R206H, the zebrafish paralog Acvr1l-R203H does not show increased signaling activity. However, in domain-swapping studies, the human kinase domain, but not the human GS domain, was sufficient to confer overactive signaling to the Acvr1l-R203H receptor. Together these results reflect the importance of GS domain activation and kinase domain functions in regulating ACVR1 signaling and identify mechanisms of reduced regulatory constraints conferred by FOP mutations. © 2023 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Myositis Ossificans , Animals , Humans , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors/genetics , Bone Morphogenetic Protein Receptors/metabolism , Ligands , Mutation/genetics , Myositis Ossificans/genetics , Myositis Ossificans/metabolism , Signal Transduction/genetics , Zebrafish/metabolism
6.
Am J Med Genet A ; 191(8): 2164-2174, 2023 08.
Article in English | MEDLINE | ID: mdl-37218523

ABSTRACT

A 54-year-old man with a history of unimelic, post-traumatic multifocal heterotopic ossification (HO) and normal genetic analysis of ACVR1 and GNAS had variants of unknown significance (VUS) in PDLIM-7 (PDZ and LIM Domain Protein 7), the gene encoding LMP-1 (LIM Mineralization Protein-1), an intracellular protein involved in the bone morphogenetic protein (BMP) pathway signaling and ossification. In order to determine if the LMP-1 variants were plausibly responsible for the phenotype observed, a series of in vitro experiments were conducted. C2C12 cells were co-transfected with a BMP-responsive reporter as well as the LMP-1 wildtype (wt) construct or the LMP-1T161I or the LMP-1D181G constructs (herein designated as LMP-161 or LMP-181) corresponding to the coding variants detected in the patient. A significantly increased BMP-reporter activity was observed in LMP-161 or LMP-181 transfected cells compared to the wt cells. The LMP-181 variant exhibited BMP-reporter activity with a four-fold increase over the LMP-1 wt protein. Similarly, mouse pre-osteoblastic MC3T3 cells transfected with the patient's LMP-1 variants expressed higher levels of osteoblast markers both at mRNA and protein levels and preferentially mineralized when stimulated with recombinant BMP-2 compared to control cells. Presently, there are no pathogenic variants of LMP-1 known to induce HO in humans. Our findings suggest that the germline variants in LMP-1 detected in our patient are plausibly related to his multifocal HO (LMP1-related multifocal HO). Further observations will be required to firmly establish this gene-disease relationship.


Subject(s)
Myositis Ossificans , Ossification, Heterotopic , Mice , Humans , Animals , Middle Aged , Cell Line , Ossification, Heterotopic/genetics , Ossification, Heterotopic/pathology , Signal Transduction , Osteogenesis , Germ Cells/metabolism , Myositis Ossificans/genetics , Activin Receptors, Type I/genetics
7.
Nat Commun ; 13(1): 6175, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36258013

ABSTRACT

Heterotopic ossification is the most disabling feature of fibrodysplasia ossificans progressiva, an ultra-rare genetic disorder for which there is currently no prevention or treatment. Most patients with this disease harbor a heterozygous activating mutation (c.617 G > A;p.R206H) in ACVR1. Here, we identify recombinant AAV9 as the most effective serotype for transduction of the major cells-of-origin of heterotopic ossification. We use AAV9 delivery for gene replacement by expression of codon-optimized human ACVR1, ACVR1R206H allele-specific silencing by AAV-compatible artificial miRNA and a combination of gene replacement and silencing. In mouse skeletal cells harboring a conditional knock-in allele of human mutant ACVR1 and in patient-derived induced pluripotent stem cells, AAV gene therapy ablated aberrant Activin A signaling and chondrogenic and osteogenic differentiation. In Acvr1(R206H) knock-in mice treated locally in early adulthood or systemically at birth, trauma-induced endochondral bone formation was markedly reduced, while inflammation and fibroproliferative responses remained largely intact in the injured muscle. Remarkably, spontaneous heterotopic ossification also substantially decreased in in Acvr1(R206H) knock-in mice treated systemically at birth or in early adulthood. Collectively, we develop promising gene therapeutics that can prevent disabling heterotopic ossification in mice, supporting clinical translation to patients with fibrodysplasia ossificans progressiva.


Subject(s)
MicroRNAs , Myositis Ossificans , Ossification, Heterotopic , Adult , Animals , Humans , Mice , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Genetic Therapy , Mice, Transgenic , Mutation , Myositis Ossificans/genetics , Myositis Ossificans/therapy , Ossification, Heterotopic/genetics , Ossification, Heterotopic/therapy , Ossification, Heterotopic/metabolism , Osteogenesis/genetics , Adenoviridae/genetics
8.
J Bone Miner Res ; 37(11): 2058-2076, 2022 11.
Article in English | MEDLINE | ID: mdl-36153796

ABSTRACT

Bone morphogenetic protein (BMP) signaling is critical in skeletal development. Overactivation can trigger heterotopic ossification (HO) as in fibrodysplasia ossificans progressiva (FOP), a rare, progressive disease of massive HO formation. A small subset of FOP patients harboring the causative ACVR1R206H mutation show strikingly mild or delayed-onset HO, suggesting that genetic variants in the BMP pathway could act as disease modifiers. Whole-exome sequencing of one such patient identified BMPR1AR443C and ACVR2AV173I as candidate modifiers. Molecular modeling predicted significant structural perturbations. Neither variant decreased BMP signaling in ACVR1R206H HEK 293T cells at baseline or after stimulation with BMP4 or activin A (AA), ligands that activate ACVR1R206H signaling. Overexpression of BMPR1AR443C in a Tg(ACVR1-R206Ha) embryonic zebrafish model, in which overactive BMP signaling yields ventralized embryos, did not alter ventralization severity, while ACVR2AV173I exacerbated ventralization. Co-expression of both variants did not affect dorsoventral patterning. In contrast, BMPR1A knockdown in ACVR1R206H HEK cells decreased ligand-stimulated BMP signaling but did not affect dorsoventral patterning in Tg(ACVR1-R206Ha) zebrafish. ACVR2A knockdown decreased only AA-stimulated signaling in ACVR1R206H HEK cells and had no effect in Tg(ACVR1-R206Ha) zebrafish. Co-knockdown in ACVR1R206H HEK cells decreased basal and ligand-stimulated signaling, and co-knockdown/knockout (bmpr1aa/ab; acvr2aa/ab) decreased Tg(ACVR1-R206Ha) zebrafish ventralization phenotypes. Our functional studies showed that knockdown of wild-type BMPR1A and ACVR2A could attenuate ACVR1R206H signaling, particularly in response to AA, and that ACVR2AV173I unexpectedly increased ACVR1R206H -mediated signaling in zebrafish. These studies describe a useful strategy and platform for functionally interrogating potential genes and genetic variants that may impact the BMP signaling pathway. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Myositis Ossificans , Ossification, Heterotopic , Animals , Humans , Myositis Ossificans/genetics , Myositis Ossificans/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Exome Sequencing , Ligands , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Ossification, Heterotopic/metabolism , Mutation
9.
NPJ Regen Med ; 7(1): 5, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35031614

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease in which extraskeletal (heterotopic) bone forms within tissues such as skeletal muscles, often in response to injury. Mutations in the BMP type I receptor ACVR1/ALK2 cause FOP by increasing BMP pathway signaling. In contrast to the growing understanding of the inappropriate formation of bone tissue within the muscle in FOP, much is still unknown about the regenerative capacity of adult diseased muscles. Utilizing an inducible ACVR1R206H knock-in mouse, we found that injured Acvr1R206H/+ skeletal muscle tissue regenerates poorly. We demonstrated that while two resident stem cell populations, muscle stem cells (MuSCs) and fibro/adipogenic progenitors (FAPs), have similar proliferation rates after injury, the differentiation potential of mutant MuSCs is compromised. Although MuSC-specific deletion of the ACVR1R206H mutation does not alter the regenerative potential of skeletal muscles in vivo, Acvr1R206H/+ MuSCs form underdeveloped fibers that fail to fuse in vitro. We further determined that FAPs from Acvr1R206H/+ mice repress the MuSC-mediated formation of Acvr1R206H/+ myotubes in vitro. These results identify a previously unrecognized role for ACVR1R206H in myogenesis in FOP, via improper interaction of tissue-resident stem cells during skeletal muscle regeneration.

10.
Am J Med Genet A ; 188(3): 806-817, 2022 03.
Article in English | MEDLINE | ID: mdl-34854557

ABSTRACT

Genetic variants are vital in informing clinical phenotypes, aiding physical diagnosis, guiding genetic counseling, understanding the molecular basis of disease, and potentially stimulating drug development. Here we describe two families with an ultrarare ACVR1 gain-of-function pathogenic variant (codon 375, Arginine > Proline; ACVR1R375P ) responsible for a mild nonclassic fibrodysplasia ossificans progressiva (FOP) phenotype. Both families include people with the ultrarare ACVR1R375P variant who exhibit features of FOP while other individuals currently do not express any clinical signs of FOP. Thus, the mild ACVR1R375P variant greatly expands the scope and understanding of this rare disorder.


Subject(s)
Myositis Ossificans , Activin Receptors, Type I/genetics , Humans , Mutation , Myositis Ossificans/diagnosis , Myositis Ossificans/genetics , Myositis Ossificans/pathology , Phenotype
11.
Bone ; 154: 116237, 2022 01.
Article in English | MEDLINE | ID: mdl-34695616

ABSTRACT

Mucopolysaccharidosis (MPS) I is a lysosomal storage disease characterized by deficient activity of the enzyme alpha-L-iduronidase, leading to abnormal accumulation of heparan and dermatan sulfate glycosaminoglycans in cells and tissues. Patients commonly exhibit progressive skeletal abnormalities, in part due to failures of endochondral ossification during postnatal growth. Previously, using the naturally-occurring canine model, we showed that bone and cartilage cells in MPS I exhibit elevated lysosomal storage from an early age and that animals subsequently exhibit significantly diminished vertebral trabecular bone formation. Wnts are critical regulators of endochondral ossification that depend on glycosaminoglycans for signaling. The objective of this study was to examine whether lithium, a glycogen synthase kinase-3 inhibitor and stimulator of Wnt/beta-catenin signaling, administered during postnatal growth could attenuate progression of vertebral trabecular bone disease in MPS I. MPS I dogs were treated orally with therapeutic levels of lithium carbonate from 14 days to 6 months-of-age. Untreated heterozygous and MPS I dogs served as controls. Serum was collected at 3 and 6 months for assessment of bone turnover markers. At the study end point, thoracic vertebrae were excised and assessed using microcomputed tomography and histology. Lithium-treated animals exhibited significantly improved trabecular spacing, number and connectivity density, and serum bone-specific alkaline phosphatase levels compared to untreated animals. Growth plates from lithium-treated animals exhibited increased numbers of hypertrophic chondrocytes relative to both untreated MPS I and heterozygous animals. These findings suggest that bone and cartilage cells in MPS I are still capable of responding to exogenous osteogenic signals even in the presence of significant lysosomal storage, and that targeted osteogenic therapies may represent a promising approach for attenuating bone disease progression in MPS I.


Subject(s)
Bone Diseases , Mucopolysaccharidosis I , Animals , Bone Diseases/therapy , Disease Models, Animal , Dogs , Humans , Lithium/therapeutic use , Mucopolysaccharidosis I/drug therapy , Mucopolysaccharidosis I/pathology , Thoracic Vertebrae/pathology , X-Ray Microtomography
12.
Dev Dyn ; 251(1): 164-177, 2022 01.
Article in English | MEDLINE | ID: mdl-34133058

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disease caused by increased BMP pathway signaling due to mutation of ACVR1, a bone morphogenetic protein (BMP) type 1 receptor. The primary clinical manifestation of FOP is extra-skeletal bone formation (heterotopic ossification) within soft connective tissues. However, the underlying ACVR1 mutation additionally alters skeletal bone development and nearly all people born with FOP have bilateral malformation of the great toes as well as other skeletal malformations at diverse anatomic sites. The specific mechanisms through which ACVR1 mutations and altered BMP pathway signaling in FOP influence skeletal bone formation during development remain to be elucidated; however, recent investigations are providing a clearer understanding of the molecular and developmental processes associated with ACVR1-regulated skeletal formation.


Subject(s)
Myositis Ossificans , Ossification, Heterotopic , Activin Receptors, Type I/genetics , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Humans , Mutation , Myositis Ossificans/genetics , Ossification, Heterotopic/genetics , Signal Transduction
13.
Front Endocrinol (Lausanne) ; 12: 732728, 2021.
Article in English | MEDLINE | ID: mdl-34858325

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare progressive genetic disease effecting one in a million individuals. During their life, patients with FOP progressively develop bone in the soft tissues resulting in increasing immobility and early death. A mutation in the ACVR1 gene was identified as the causative mutation of FOP in 2006. After this, the pathophysiology of FOP has been further elucidated through the efforts of research groups worldwide. In 2015, a workshop was held to gather these groups and discuss the new challenges in FOP research. Here we present an overview and update on these topics.


Subject(s)
Endocrinology/trends , Myositis Ossificans , Congresses as Topic , Endocrinology/methods , Expert Testimony/trends , History, 21st Century , Humans , Mutation/physiology , Myositis Ossificans/diagnosis , Myositis Ossificans/etiology , Myositis Ossificans/pathology , Myositis Ossificans/therapy , Ossification, Heterotopic/genetics , Ossification, Heterotopic/pathology
14.
Am J Med Genet A ; 185(8): 2572-2575, 2021 08.
Article in English | MEDLINE | ID: mdl-33973349

ABSTRACT

Little is known about FOP in Africa and few cases of nonclassic fibrodysplasia ossificans progressiva (FOP) have been reported on the continent. Here we report a three-year-old girl from Angola with a nonclassic FOP clinical presentation that is characterized by complex malformations of the toes and fingers, reduction defects of the digits, absence of nails, progressive heterotopic ossification, and a confirmed heterozygous ACVR1 variant at c.983G > A. Emerging knowledge of FOP can serve as a catalyst for increasing awareness of FOP in under-represented medical communities by achieving a correct FOP diagnosis, improving access of individuals with FOP to clinical trial recruitment, and enhancing the ability of affected individuals to be part of and interact with the international FOP community.


Subject(s)
Activin Receptors, Type I/genetics , Alleles , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Myositis Ossificans/diagnosis , Myositis Ossificans/genetics , Amino Acid Substitution , Angola , Child, Preschool , Female , Genetic Association Studies/methods , Genotype , Heterozygote , Humans , Phenotype , Radiography
15.
EMBO J ; 40(14): e106317, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34003511

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) and diffuse intrinsic pontine glioma (DIPG) are debilitating diseases that share causal mutations in ACVR1, a TGF-ß family type I receptor. ACVR1R206H is a frequent mutation in both diseases. Pathogenic signaling via the SMAD1/5 pathway is mediated by Activin A, but how the mutation triggers aberrant signaling is not known. We show that ACVR1 is essential for Activin A-mediated SMAD1/5 phosphorylation and is activated by two distinct mechanisms. Wild-type ACVR1 is activated by the Activin type I receptors, ACVR1B/C. In contrast, ACVR1R206H activation does not require upstream kinases, but is predominantly activated via Activin A-dependent receptor clustering, which induces its auto-activation. We use optogenetics and live-imaging approaches to demonstrate Activin A-induced receptor clustering and show it requires the type II receptors ACVR2A/B. Our data provide molecular mechanistic insight into the pathogenesis of FOP and DIPG by linking the causal activating genetic mutation to disrupted signaling.


Subject(s)
Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Activins/genetics , Activins/metabolism , Phosphorylation/genetics , Animals , Cell Line , Cluster Analysis , HEK293 Cells , Humans , Mice , Mutation/genetics , Myositis Ossificans/genetics , NIH 3T3 Cells , Signal Transduction/genetics
16.
Front Genet ; 12: 633206, 2021.
Article in English | MEDLINE | ID: mdl-33574833

ABSTRACT

Heterotopic ossification (HO), the formation of bone outside of the skeleton, occurs in response to severe trauma and in rare genetic diseases such as progressive osseous heteroplasia (POH). In POH, which is caused by inactivation of GNAS, a gene that encodes the alpha stimulatory subunit of G proteins (Gsα), HO typically initiates within subcutaneous soft tissues before progressing to deeper connective tissues. To mimic POH, we used conditional Gnas-null mice which form HO in subcutaneous tissues upon Gnas inactivation. In response to Gnas inactivation, we determined that prior to detection of heterotopic bone, dermal adipose tissue changed dramatically, with progressively decreased adipose tissue volume and increased density of extracellular matrix over time. Upon depletion of the adipose tissue, heterotopic bone progressively formed in those locations. To investigate the potential relevance of the tissue microenvironment for HO formation, we implanted Gnas-null or control mesenchymal progenitor cells into Gnas-null or control host subcutaneous tissues. We found that mutant cells in a Gnas-null tissue environment induced a robust HO response while little/no HO was detected in control hosts. Additionally, a Gnas-null tissue environment appeared to support the recruitment of control cells to heterotopic bone, although control cell implants were associated with less HO formation compared to mutant cells. Our data support that Gnas inactivation alters the tissue microenvironment to influence mutant and wild-type progenitor cells to contribute to HO formation.

17.
Dev Biol ; 470: 136-146, 2021 02.
Article in English | MEDLINE | ID: mdl-33217406

ABSTRACT

The development of joints in the mammalian skeleton depends on the precise regulation of multiple interacting signaling pathways including the bone morphogenetic protein (BMP) pathway, a key regulator of joint development, digit patterning, skeletal growth, and chondrogenesis. Mutations in the BMP receptor ACVR1 cause the rare genetic disease fibrodysplasia ossificans progressiva (FOP) in which extensive and progressive extra-skeletal bone forms in soft connective tissues after birth. These mutations, which enhance BMP-pSmad1/5 pathway activity to induce ectopic bone, also affect skeletal development. FOP can be diagnosed at birth by symmetric, characteristic malformations of the great toes (first digits) that are associated with decreased joint mobility, shortened digit length, and absent, fused, and/or malformed phalanges. To elucidate the role of ACVR1-mediated BMP signaling in digit skeletal development, we used an Acvr1R206H/+;Prrx1-Cre knock-in mouse model that mimics the first digit phenotype of human FOP. We have determined that the effects of increased Acvr1-mediated signaling by the Acvr1R206H mutation are not limited to the first digit but alter BMP signaling, Gdf5+ joint progenitor cell localization, and joint development in a manner that differently affects individual digits during embryogenesis. The Acvr1R206H mutation leads to delayed and disrupted joint specification and cleavage in the digits and alters the development of cartilage and endochondral ossification at sites of joint morphogenesis. These findings demonstrate an important role for ACVR1-mediated BMP signaling in the regulation of joint and skeletal formation, show a direct link between failure to restrict BMP signaling in the digit joint interzone and failure of joint cleavage at the presumptive interzone, and implicate impaired, digit-specific joint development as the proximal cause of digit malformation in FOP.


Subject(s)
Activin Receptors, Type I/metabolism , Bone Morphogenetic Proteins/metabolism , Joints/embryology , Myositis Ossificans/embryology , Myositis Ossificans/metabolism , Toes/embryology , Animals , Body Patterning , Chondrogenesis , Disease Models, Animal , Forelimb/abnormalities , Forelimb/embryology , Growth Differentiation Factor 5/metabolism , Growth Plate/embryology , Hindlimb/abnormalities , Hindlimb/embryology , Joints/abnormalities , Joints/metabolism , Mice , Osteogenesis , Signal Transduction , Smad1 Protein/metabolism , Smad5 Protein/metabolism , Stem Cells/physiology , Toes/abnormalities
18.
Front Cell Dev Biol ; 8: 612853, 2020.
Article in English | MEDLINE | ID: mdl-33364240

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder in which extensive heterotopic ossification (HO) begins to form during early childhood and progresses throughout life. Although HO does not occur during embryonic development, children who carry the ACVR1 R206H mutation that causes most cases of FOP characteristically exhibit malformation of their great toes at birth, indicating that the mutation acts during embryonic development to alter skeletal formation. Despite the high prevalence of the great toe malformation in the FOP population, it has received relatively little attention due to its clinically benign nature. In this study, we examined radiographs from a cohort of 41 FOP patients ranging from 2 months to 48 years of age to provide a detailed analysis of the developmental features, progression, and variability of the great toe malformation of FOP, which include absent skeletal structures, malformed epiphyses, ectopic ossification centers, malformed first metatarsals and phalangeal fusion.

19.
Elife ; 92020 09 08.
Article in English | MEDLINE | ID: mdl-32897189

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is a rare human genetic disorder characterized by altered skeletal development and extraskeletal ossification. All cases of FOP are caused by activating mutations in the type I BMP/TGFß cell surface receptor ACVR1, which over-activates signaling through phospho-Smad1/5 (pSmad1/5). To investigate the mechanism by which FOP-ACVR1 enhances pSmad1/5 activation, we used zebrafish embryonic dorsoventral (DV) patterning as an assay for BMP signaling. We determined that the FOP mutants ACVR1-R206H and -G328R do not require their ligand binding domain to over-activate BMP signaling in DV patterning. However, intact ACVR1-R206H has the ability to respond to both Bmp7 and Activin A ligands. Additionally, BMPR1, a type I BMP receptor normally required for BMP-mediated patterning of the embryo, is dispensable for both ligand-independent signaling pathway activation and ligand-responsive signaling hyperactivation by ACVR1-R206H. These results demonstrate that FOP-ACVR1 is not constrained by the same receptor/ligand partner requirements as WT-ACVR1.


Subject(s)
Activin Receptors, Type I/genetics , Fish Proteins/genetics , Myositis Ossificans/genetics , Zebrafish/genetics , Activin Receptors, Type I/metabolism , Animals , Disease Models, Animal , Embryo, Nonmammalian/metabolism , Fish Proteins/metabolism , Myositis Ossificans/metabolism , Zebrafish/embryology , Zebrafish/growth & development , Zebrafish/metabolism
20.
Horm Res Paediatr ; 93(3): 182-196, 2020.
Article in English | MEDLINE | ID: mdl-32756064

ABSTRACT

Patients affected by pseudohypoparathyroidism (PHP) or related disorders are characterized by physical findings that may include brachydactyly, a short stature, a stocky build, early-onset obesity, ectopic ossifications, and neurodevelopmental deficits, as well as hormonal resistance most prominently to parathyroid hormone (PTH). In addition to these alterations, patients may develop other hormonal resistances, leading to overt or subclinical hypothyroidism, hypogonadism and growth hormone (GH) deficiency, impaired growth without measurable evidence for hormonal abnormalities, type 2 diabetes, and skeletal issues with potentially severe limitation of mobility. PHP and related disorders are primarily clinical diagnoses. Given the variability of the clinical, radiological, and biochemical presentation, establishment of the molecular diagnosis is of critical importance for patients. It facilitates management, including prevention of complications, screening and treatment of endocrine deficits, supportive measures, and appropriate genetic counselling. Based on the first international consensus statement for these disorders, this article provides an updated and ready-to-use tool to help physicians and patients outlining relevant interventions and their timing. A life-long coordinated and multidisciplinary approach is recommended, starting as far as possible in early infancy and continuing throughout adulthood with an appropriate and timely transition from pediatric to adult care.


Subject(s)
Diabetes Mellitus, Type 2 , Dwarfism, Pituitary , Hypothyroidism , Pseudohypoparathyroidism , Transition to Adult Care , Adult , Child , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/therapy , Dwarfism, Pituitary/diagnosis , Dwarfism, Pituitary/therapy , Humans , Hypothyroidism/diagnosis , Hypothyroidism/therapy , Practice Guidelines as Topic , Pseudohypoparathyroidism/diagnosis , Pseudohypoparathyroidism/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...