Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cytogenet ; 14(1): 47, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34607577

ABSTRACT

BACKGROUND: There are many reports on rearrangements occurring separately in the regions of chromosomes 9p and 15q affected in the case under study. 15q duplication syndrome is caused by the presence of at least one extra maternally derived copy of the Prader-Willi/Angelman critical region. Trisomy 9p is the fourth most frequent chromosome anomaly with a clinically recognizable syndrome often accompanied by intellectual disability. Here we report a new case of a patient with maternally derived unique complex sSMC resulting in partial trisomy of both chromosomes 9 and 15 associated with intellectual disability. CASE PRESENTATION: We characterise a supernumerary derivative chromosome 15: 47,XY,+der(15)t(9;15)(p21.2;q13.2), likely resulting from 3:1 malsegregation during maternal gametogenesis. Chromosomal analysis showed that a phenotypically normal mother is a carrier of balanced translocation t(9;15)(p21.1;q13.2). Her 7-year-old son showed signs of intellectual disability and a number of physical abnormalities including bilateral cryptorchidism and congenital megaureter. The child's magnetic resonance imaging showed changes in brain volume and in structural and functional connectivity revealing phenotypic changes caused by the presence of the extra chromosome material, whereas the mother's brain MRI was normal. Sequence analyses of the microdissected der(15) chromosome detected two breakpoint regions: HSA9:25,928,021-26,157,441 (9p21.2 band) and HSA15:30,552,104-30,765,905 (15q13.2 band). The breakpoint region on chromosome HSA9 is poor in genetic features with several areas of high homology with the breakpoint region on chromosome 15. The breakpoint region on HSA15 is located in the area of a large segmental duplication. CONCLUSIONS: We discuss the case of these phenotypic and brain MRI features in light of reported signatures for 9p partial trisomy and 15 duplication syndromes and analyze how the genomic characteristics of the found breakpoint regions have contributed to the origin of the derivative chromosome. We recommend MRI for all patients with a developmental delay, especially in cases with identified rearrangements, to accumulate more information on brain phenotypes related to chromosomal syndromes.

2.
Cytogenet Genome Res ; 161(3-4): 105-119, 2021.
Article in English | MEDLINE | ID: mdl-33849037

ABSTRACT

Most copy number variations (CNVs) in the human genome display incomplete penetrance with unknown underlying mechanisms. One such mechanism may be epigenetic modification, particularly DNA methylation. The IMMP2L gene is located in a critical region for autism susceptibility on chromosome 7q (AUTS1). The level of DNA methylation was assessed by bisulfite sequencing of 87 CpG sites in the IMMP2L gene in 3 families with maternally inherited 7q31.1 microdeletions affecting the IMMP2L gene alone. Bisulfite sequencing revealed comparable levels of DNA methylation in the probands, healthy siblings without microdeletions, and their fathers. In contrast, a reduced DNA methylation index and increased IMMP2L expression were observed in lymphocytes from the healthy mothers compared with the probands. A number of genes were upregulated in the healthy mothers compared to controls and downregulated in probands compared to mothers. These genes were enriched in components of the ribosome and electron transport chain, as well as oxidative phosphorylation and various degenerative conditions. Differential expression in probands and mothers with IMMP2L deletions relative to controls may be due to compensatory processes in healthy mothers with IMMP2L deletions and disturbances of these processes in probands with intellectual disability. The results suggest a possible partial compensation for IMMP2L gene haploinsufficiency in healthy mothers with the 7q31.1 microdeletion by reducing the DNA methylation level. Differential DNA methylation of intragenic CpG sites may affect the phenotypic manifestation of CNVs and explain the incomplete penetrance of chromosomal microdeletions.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 7/genetics , DNA Methylation , Developmental Disabilities/genetics , Endopeptidases/genetics , Intellectual Disability/genetics , Adolescent , Adult , Child , Child, Preschool , CpG Islands/genetics , Family Health , Female , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Maternal Inheritance/genetics
3.
Mol Cytogenet ; 10: 43, 2017.
Article in English | MEDLINE | ID: mdl-29177011

ABSTRACT

BACKGROUND: Small supernumerary marker chromosomes can be derived from autosomes and sex chromosomes and can accompany chromosome pathologies, such as Turner syndrome. CASE PRESENTATION: Here, we present a case report of a patient with mosaic Turner syndrome and Dandy-Walker syndrome carrying a marker chromosome. We showed the presence of the marker chromosome in 33.8% of blood cells. FISH of the probe derived from the marker chromosome by microdissection revealed that it originated from the centromeric region of chromosome X. Additionally, we showed no telomeric sequences and no XIST sequence in the marker chromosome. This is the first report of these two syndromes accompanied by the presence of a marker chromosome. CONCLUSION: Marker chromosome was X-derived and originated from centromeric region. Patient has mild symptoms but there is no XIST gene in marker chromosome. TRIAL REGISTRATION: CPG137. Registered 03 March 2017.

4.
Mol Syndromol ; 8(2): 110-114, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28611553

ABSTRACT

In this report, we describe a molecular cytogenetic study of a family burdened with intellectual disability (ID) and suicide. Our study revealed that the mother has a heterozygous premutation in the FMR1 gene and supernumerary X chromosomes as well as X-derived marker chromosomes. Both of her sons have ID and a normal chromosome number. One of the sons has fragile X syndrome, and the other has ID of an unclear nature.

SELECTION OF CITATIONS
SEARCH DETAIL
...