Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
3.
JACC Case Rep ; 9: 101591, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909273

ABSTRACT

A 69-year-old man with a history of previous ablation and cardiac surgery was found on cardiac electrophysiology study to have a macro-re-entrant left atrial flutter initially misdiagnosed as a micro-re-entrant right atrial tachycardia resulting from the unique conduction properties of Bachmann's bundle. (Level of Difficulty: Advanced.).

4.
J Interv Card Electrophysiol ; 63(1): 153-164, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33591458

ABSTRACT

PURPOSE: To describe electrocardiographic vector patterns during early VF transition (Wiggers stage 1). METHODS: In 100 electrophysiology studies with VF induction, the first 3 beats of VF were analyzed in lead I for left/right axis (LA/RA), V1 for left/right bundle (LB/RB), and aVF for superior/inferior axis (SA/IA). Correlation with demographic/clinical factors was performed using regression analyses and mixed effect modeling. RESULTS: VF initiated more likely with LA than RA (P < 0.001) and LB than RB (P = 0.04) suggesting original wavebreak in the right ventricle. The 3-dimensional morphology changed in 69% of VF during the first 3 beats, with predominant increase in RB, suggesting a transition of QRS-originating vector to septum/left ventricle. Conservation of morphology (31%) was favored by initial RB (P = 0.002) and LA morphology (P = 0.01). Initiation of VF with LA vs RA was more likely in African-Americans (P = 0.016) and increasing age (P = 0.032). Ischemic cardiomyopathy favored VF initiation with RB 6.7-fold (P = 0.025), possibly linking LV myocardial scar to initial VF wavebreak location. Male gender and ischemic cardiomyopathy prolonged time-to-loss of predominant vector by 119% (P = 0.002) and 71% (P = 0.017), respectively, suggesting more preserved anatomic/functional reentry. CONCLUSION: The predominant QRS vectors during early Wiggers stage 1 VF are not random and suggest an initial wavebreak more commonly in the right ventricle, followed by a transitional shift to the septum/left ventricle. Ethnicity, male gender, age, and co-morbidities result in directional preservation of initiating VF vectors possibly due to myocardial mass/fibrosis. Findings may allow new treatment/ablation approaches.


Subject(s)
Arrhythmias, Cardiac , Ventricular Fibrillation , Cardiac Electrophysiology , Electrocardiography , Heart Ventricles , Humans , Male , Ventricular Fibrillation/diagnostic imaging
5.
J Cardiovasc Electrophysiol ; 32(8): 2238-2245, 2021 08.
Article in English | MEDLINE | ID: mdl-34165227

ABSTRACT

PURPOSE: We sought to study the predictive value of the metabolic heterogeneous zone (HZ) as determined by 18 Fluorodeoxyglucose (18 FDG) positron emission tomography (PET) viability studies in ventricular tachycardia (VT) patients. METHODS: PET studies utilizing 82 Rubidium (82 Rb) tracer for perfusion and 18 FDG tracer for viability were analyzed using PMOD (PMOD Technologies) and further analyzed using 684-segment plots. 18 FDG uptake was normalized to the area with maximal perfusion on the rest 82 Rb study. Metabolic scar, HZ, and healthy segments were defined with perfusion-normalized 18 FDG uptake between 0%-50%, 50%-70%, and >70%, respectively. RESULTS: Thirty-four VT patients (age, 63 ± 12 years) were evaluated with 18 FDG-PET viability study. Most (n = 31) patients underwent VT ablation. Patients were categorized to HZ < median versus HZ ≥ median based on a median HZ area size of 21.0 cm2 . HZ size was significantly larger in the deceased group than the alive group (35.2 cm2 vs. 18.1 cm2 , p = .01). Deaths were significantly higher in HZ ≥ 21 cm2 group than HZ < 21 cm2 group (58.8% vs. 11.8%, p = .005). Survival analysis showed significantly higher mortality in the HZ ≥ 21 cm2 group than the HZ < 21 cm2 group (HR = 4.1, 95% CI: 1.3-12.6, p = .016). In a multivariable analysis, HZ was found to be an independent predictor for all-cause mortality (HR = 1.07, 95% CI: 1.02-1.12, p = .01) CONCLUSIONS: Increased HZ size of myocardium was associated with increased mortality. Metabolic HZ quantification may be of value in risk stratification and management of ischemic and nonischemic patients with VT.


Subject(s)
Fluorodeoxyglucose F18 , Tachycardia, Ventricular , Aged , Cicatrix/pathology , Humans , Middle Aged , Myocardium/pathology , Positron-Emission Tomography , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/pathology , Tachycardia, Ventricular/surgery
6.
J Nucl Med ; 62(11): 1591-1598, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33893186

ABSTRACT

The functional and molecular imaging characteristics of ischemic ventricular tachycardia (VT) substrate are incompletely understood. Our objective was to compare regional 18F-FDG PET tracer uptake with detailed electroanatomic maps (EAMs) in a more extensive series of postinfarction VT patients to define the metabolic properties of VT substrate and successful ablation sites. Methods: Three-dimensional (3D) metabolic left ventricular reconstructions were created from perfusion-normalized 18F-FDG PET images in consecutive patients undergoing VT ablation. PET defects were classified as severe (defined as <50% uptake) or moderate (defined as 50%-70% uptake), as referenced to the maximal 17-segment uptake. Color-coded PET scar reconstructions were coregistered with corresponding high-resolution 3D EAMs, which were classified as indicating dense scarring (defined as voltage < 0.5 mV), normal myocardium (defined as voltage > 1.5 mV), or border zones (defined as voltage of 0.5-1.5 mV). Results: All 56 patients had ischemic cardiomyopathy (ejection fraction, 29% ± 12%). Severe PET defects were larger than dense scarring, at 63.0 ± 48.4 cm2 versus 13.8 ± 33.1 cm2 (P < 0.001). Similarly, moderate/severe PET defects (≤70%) were larger than areas with abnormal voltage (≤1.5 mV) measuring 105.1 ± 67.2 cm2 versus 56.2 ± 62.6 cm2 (P < 0.001). Analysis of bipolar voltage (23,389 mapping points) showed decreased voltage among severe PET defects (n = 10,364; 0.5 ± 0.3 mV) and moderate PET defects (n = 5,243; 1.5 ± 0.9 mV, P < 0.01), with normal voltage among normal PET areas (>70% uptake) (n = 7,782, 3.2 ± 1.3 mV, P < 0.001). Eighty-eight percent of VT channel or exit sites (n = 44) were metabolically abnormal (severe PET defect, 78%; moderate PET defect, 10%), whereas 12% (n = 6) were in PET-normal areas. Metabolic channels (n = 26) existed in 45% (n = 25) of patients, with an average length and width of 17.6 ± 12.5 mm and 10.3 ± 4.2 mm, respectively. Metabolic channels were oriented predominantly in the apex or base (86%), harboring VT channel or exit sites in 31%. Metabolic rapid-transition areas (>50% change in 18F-FDG tracer uptake/15 mm) were detected in 59% of cases (n = 33), colocalizing to VT channels or exit sites (15%) or near these sites (85%, 12.8 ± 8.5 mm). Metabolism-voltage mismatches in which there was a severe PET defect but voltage indicating normal myocardium were seen in 21% of patients (n = 12), 41% of whom were harboring VT channel or exit sites. Conclusion: Abnormal 18F-FDG uptake categories could be detected using incremental 3D step-up reconstructions. They predicted decreasing bipolar voltages and VT channel or exit sites in about 90% of cases. Additionally, functional imaging allowed detection of novel molecular tissue characteristics within the ischemic VT substrate such as metabolic channels, rapid-transition areas, and metabolism-voltage mismatches demonstrating intrasubstrate heterogeneity and providing possible targets for imaging-guided ablation.


Subject(s)
Fluorodeoxyglucose F18 , Myocardial Ischemia , Aged , Cicatrix , Humans , Middle Aged , Tachycardia, Ventricular
7.
Pacing Clin Electrophysiol ; 43(3): 314-321, 2020 03.
Article in English | MEDLINE | ID: mdl-32052461

ABSTRACT

BACKGROUND: Cardiac magnetic resonance (CMR) characteristics of ventricular radiofrequency ablation (RFA) lesions have only been incompletely defined. AIM: To determine the detectability and imaging characteristics of ventricular RFA lesions in an unselected patient cohort undergoing ventricular arrhythmia ablation. METHODS AND RESULTS: A retrospective chart review (n = 249) identified 36 patients with either pre-/postablation CMR (n = 14) or only postablation CMR (n = 22). Ablation lesions could be identified in 50% (n = 18) of patients. Nonvisualized lesions had more preexisting transmural late gadolinium enhancement (LGE) >75% at the ablation sites (21% vs 0.0%, P = .042), more prevalent ICD artifact (50% vs 0%, P = .001), and lower ejection fraction (35.8 ± 14.2% vs 45.3 ± 13.4%, P = .048). Early CMR imaging demonstrated a central "black" signal void (microvascular obstruction [MVO], n = 12, 67%) up to 32 days post-RFA, whereas late imaging showed a homogenously "white" gadolinium enhancement pattern (n = 6, 33%). MVO was only observed in nonfibrotic myocardium without preexisting LGE (n = 12) but was not observed in the scar with preexisting LGE (n = 3, P = .002) suggesting different wash-in/wash-out kinetics in scar/nonscar myocardium. Signal intensity (1909 vs 2534, P = .009) and contrast-to-noise ratio (-7.8 vs 16.3, P = .009) were significantly different between MVO and LGE lesions, respectively. CONCLUSION: Ventricular ablation lesions visualization is negatively affected by preexisting transmural scar, ICD artifact, and low ejection fraction. The transition of "black" MVO appearance to "white" LGE appearance on CMR occurs around 1 month following ablation, suggesting a change in histological characteristics of ablation lesions. This may affect the utility of CMR in the evaluation of the ventricular lesions, when undergoing real-time or repeat VT ablations.


Subject(s)
Catheter Ablation , Magnetic Resonance Imaging, Cine/methods , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/surgery , Ventricular Premature Complexes/diagnostic imaging , Ventricular Premature Complexes/surgery , Contrast Media , Electrophysiologic Techniques, Cardiac , Female , Humans , Male , Meglumine/analogs & derivatives , Middle Aged , Organometallic Compounds , Retrospective Studies , Tachycardia, Ventricular/physiopathology , Ventricular Premature Complexes/physiopathology
8.
JACC Case Rep ; 1(2): 235-237, 2019 Aug.
Article in English | MEDLINE | ID: mdl-34316794

ABSTRACT

At 22 years following heart transplantation, a patient presented with incessant atrial flutter. During electrophysiologic study, 2 simultaneous atrial arrhythmias were mapped, 1 from the donor and 1 from the recipient's heart. High-density mapping allowed for rapid identification of electrically abnormal areas, which were successfully ablated, thus restoring sinus rhythm. (Level of Difficulty: Advanced.).

9.
J Nucl Med ; 60(1): 79-85, 2019 01.
Article in English | MEDLINE | ID: mdl-29959218

ABSTRACT

Postischemic adaptation results in characteristic myocardial structural and functional changes in the ventricular tachycardia (VT) substrate. The aim of this study was to compare myocardial structural and functional adaptations (late gadolinium enhancement/abnormal innervation) with detailed VT mapping data to identify regional heterogeneities in postischemic changes. Methods: Fifteen patients with ischemic cardiomyopathy and drug-refractory VT underwent late gadolinium enhancement cardiac MRI (CMR), 123I-metaiodobenzylguanidine SPECT, and high-resolution bipolar voltage mapping to assess fibrosis (>3 SDs), abnormal innervation (<50% tracer uptake), and low-voltage area (<1.5 mV), respectively. Three-dimensional reconstructed CMR/123I-metaiodobenzylguanidine models were coregistered for further comparison. Results: Postischemic structural and functional adaptations in all 3 categories were similar in size (reported as median [quartile 1-quartile 3]: CMR scar, 46.1 cm2 [33.1-86.9 cm2]; abnormal innervation, 47.8 cm2 [40.5-68.1 cm2]; and low-voltage area, 29.5 cm2 [24.5-102.6 cm2]; P > 0.05). However, any single modality underestimated the total VT substrate area defined as abnormal in at least 1 of the 3 modalities (76.0 cm2 [57.9-143.2 cm2]; P < 0.001). Within the total VT substrate area, regions abnormal in all 3 modalities were most common (25.2%). However, significant parts of the VT substrate had undergone heterogeneous adaptation (abnormal in <3 modalities); the most common categories were "abnormal innervation only" (18.2%), "CMR scar plus abnormal innervation only" (14.9%), and "CMR scar only" (14.6%). All 14 VT channel/exit sites (0.88 ± 0.74 mV) were localized to myocardium demonstrating CMR scar and abnormal innervation. This specific tissue category accounted for 68.3% of the CMR scar and 31.2% of the total abnormal postischemic VT substrate area. Conclusion: Structural and functional imaging demonstrated regional heterogeneities in the postischemic VT substrate not appreciated by any single modality alone. The coexistence of abnormal innervation and CMR scar may identify a particularly "proarrhythmic" adaptation and may represent a potential novel target for VT ablation.


Subject(s)
3-Iodobenzylguanidine , Heart/diagnostic imaging , Magnetic Resonance Imaging , Multimodal Imaging , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/pathology , Tomography, Emission-Computed, Single-Photon , Aged , Feasibility Studies , Female , Heart/innervation , Humans , Male , Tachycardia, Ventricular/physiopathology
10.
Europace ; 20(10): 1647-1656, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29528391

ABSTRACT

Aims: To determine if a software algorithm can use an individualized distance-morphology difference model, built from three initial pacemaps, to prospectively locate the exit site (ES) of ventricular arrhythmias (VA). Methods and results: Consecutive patients undergoing ablation of VA from a single centre were recruited. During mapping, three initial pacing points were collected in the chamber of interest and the navigation algorithm applied to predict the ES, which was corroborated by conventional mapping techniques. Thirty-two patients underwent ES prediction over 35 procedures. Structural heart disease was present in 16 (7 ischaemic cardiomyopathy, 9 non-ischaemic cardiomyopathy), median ejection fraction 45% [Interquartile range (IQR) 26]. The remainder had normal hearts. The navigation algorithm was applied to 46 VA (24 left ventricle, 11 right ventricular outflow tract, 5 left ventricular outflow tract, 4 right ventricle, 2 epicardial) and successfully located the site of best pacemap match in 45 within a median area of 196.5 mm2 (IQR 161.3, range 46.6-1288.2 mm2). Conclusions: In a diverse population of patients with and without structural heart disease, the ES of VA can be accurately and reliably identified to within a clinically useful target area using a simple software navigation algorithm based on pacemapping.


Subject(s)
Algorithms , Electrophysiologic Techniques, Cardiac/methods , Software , Tachycardia, Ventricular/physiopathology , Ventricular Premature Complexes/physiopathology , Adult , Aged , Arrhythmogenic Right Ventricular Dysplasia/complications , Cardiomyopathies/complications , Cardiomyopathy, Dilated/complications , Catheter Ablation , Cicatrix/complications , Female , Humans , Male , Middle Aged , Myocardial Ischemia/complications , Myocarditis/complications , Proof of Concept Study , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/surgery , Ventricular Premature Complexes/etiology , Ventricular Premature Complexes/surgery
11.
Pacing Clin Electrophysiol ; 40(11): 1206-1212, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28901573

ABSTRACT

INTRODUCTION: Visualization of left atrial (LA) anatomy using image integration modules has been associated with decreased radiation exposure and improved procedural outcome when used for guidance of pulmonary vein isolation (PVI) in atrial fibrillation (AF) ablation. We evaluated the CARTOSEG™ CT Segmentation Module (Biosense Webster, Inc.) that offers a new CT-specific semiautomatic reconstruction of the atrial endocardium. METHODS: The CARTOSEG™ CT Segmentation Module software was assessed prospectively in 80 patients undergoing AF ablation. Using preprocedural contrast-enhanced computed tomography (CE-CT), cardiac chambers, coronary sinus (CS), and esophagus were semiautomatically segmented. Segmentation quality was assessed from 1 (poor) to 4 (excellent). The reconstructed structures were registered with the electroanatomic map (EAM). PVI was performed using the registered 3D images. RESULTS: Semiautomatic reconstruction of the heart chambers was successfully performed in all 80 patients with AF. CE-CT DICOM file import, semiautomatic segmentation of cardiac chambers, esophagus, and CS was performed in 185 ± 105, 18 ± 5, 119 ± 47, and 69 ± 19 seconds, respectively. Average segmentation quality was 3.9 ± 0.2, 3.8 ± 0.3, and 3.8 ± 0.2 for LA, esophagus, and CS, respectively. Registration accuracy between the EAM and CE-CT-derived segmentation was 4.2 ± 0.9 mm. Complications consisted of one perforation (1%) which required pericardiocentesis, one increased pericardial effusion treated conservatively (1%), and one early termination of ablation due to thrombus formation on the ablation sheath without TIA/stroke (1%). All targeted PVs (n  =  309) were successfully isolated. CONCLUSIONS: The novel CT- CARTOSEG™ CT Segmentation Module enables a rapid and reliable semiautomatic 3D reconstruction of cardiac chambers and adjacent anatomy, which facilitates successful and safe PVI.


Subject(s)
Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Catheter Ablation , Pulmonary Veins/surgery , Software Validation , Tomography, X-Ray Computed , Contrast Media , Echocardiography, Transesophageal , Electrophysiologic Techniques, Cardiac , Female , Humans , Male , Middle Aged , Pericardiocentesis , Prospective Studies , Radio Waves , Radiographic Image Interpretation, Computer-Assisted
12.
Pacing Clin Electrophysiol ; 40(10): 1059-1066, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28722134

ABSTRACT

BACKGROUND: A significant number of ventricular tachycardia circuits are located close to the epicardial surface and are amendable to epicardial ablation. Epicardial fat often interferes with substrate mapping and ablation, though little is known regarding the distribution of fat and its fluctuation with the cardiac cycle. METHODS: We studied 40 patients who underwent a 64-slice multidetector computed tomography in order to describe patterns of epicardial fat distribution, variation during cardiac cycle, and clinical predictors of epicardial fat. Multiplanar reconstructions were analyzed during systole and diastole in six cross-sections. Epicardial fat thickness was measured across multiple wall segments in each view. RESULTS: Epicardial fat was found to be thicker in areas overlying coronary vasculature (7.8 ± 2.6 mm vs 3.5 ± 0.9 mm, P = 0.001), along with the right ventricular wall (3.9 ± 0.8 mm vs 2.6 ± 0.6 mm, P = 0.001) and the ventricular base (6.1 ± 1.7 mm vs 4.6 ± 1.6 mm, P < 0.01). Epicardial fat thickness increased 27% during systole as compared to diastole (4.9 ± 2.7 mm vs 6.2 ± 3.0 mm, P = 0.04). Variation with cardiac cycle was most evident along the right ventricular wall (3.9 ± 0.8 mm vs 5.0 ± 1.3 mm, P = 0.001) and nonvascular areas (P = 0.001), especially at the ventricular base (3.7 ± 1.1 mm vs 5.3 ± 1.5 mm, P = 0.001). In multivariate logistic regression, we found that age >50 years (P = 0.031) and coronary artery disease (P = 0.023) were statistically correlated with epicardial fat >5-mm thickness and body mass index > 33 (P = 0.052) nearly so. CONCLUSIONS: Baseline epicardial fat thickness >5 mm is common in areas typically targeted during epicardial ablation and further increases during the cardiac cycle. Simple clinical characteristics can identify patients with >5 mm epicardial fat in which preprocedural computed tomography imaging and three-dimensional fat map reconstruction may facilitate epicardial ablation.


Subject(s)
Adipose Tissue/diagnostic imaging , Catheter Ablation/methods , Epicardial Mapping/methods , Multidetector Computed Tomography , Pericardium/diagnostic imaging , Surgery, Computer-Assisted , Tachycardia, Ventricular/surgery , Cardiac Surgical Procedures/methods , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies
13.
J Interv Card Electrophysiol ; 48(3): 247-254, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28120237

ABSTRACT

PURPOSE: Hibernating myocardium (HM) is associated with sudden cardiac death (SCD). Little is known about the electrophysiological properties of HM and the basis of its association with SCD. We aimed to electrophysiologically characterize HM in patients with ventricular tachycardia (VT). METHODS: Endocardial voltage mapping, metabolic 18FDG-positron emission tomography (PET) and perfusion 82Rb, 201Tl, or 99mTc scans were performed in 61 ischemic heart disease patients with VT. Hibernating areas were identified which was followed by three-dimensional PET reconstructions and integration with voltage maps to allow hybrid metabolic-electro-anatomic assessment of the arrhythmogenic substrate. RESULTS: Of 61 patients with ischemic heart disease and refractory VT, 7 were found to have hibernating myocardium (13%). A total of 303 voltage points were obtained within hibernating myocardium (8.2 points per 10 cm2) and displayed abnormal voltage in 48.5 and 78.3% of bipolar and unipolar recordings, respectively, with significant heterogeneity of bipolar (p < 0.0001) and unipolar voltage measurements (p = 0.0004). Hibernating areas in 6 of 7 patients contained all three categories of bipolar voltage-defined scar (<0.5 mV), border zone (0.5-1.5 mV), and normal myocardium (>1.5 mV). The characteristics of local electrograms were also assessed and found abnormal in most recordings (76.6, 10.2% fractionated, 5.3% isolated potentials). Exit sites of clinical VTs were determined in 6 patients, of which 3 were located within hibernating myocardium. CONCLUSIONS: Hibernating myocardium displays abnormal and heterogeneous electrical properties and seems to contribute to the substrate of VT. These observations may underlie the vulnerability to reentry and SCD in patients with hypoperfused yet viable myocardium.


Subject(s)
Body Surface Potential Mapping/methods , Fluorodeoxyglucose F18/pharmacokinetics , Heart Conduction System/physiopathology , Imaging, Three-Dimensional/methods , Myocardial Stunning/physiopathology , Tachycardia, Ventricular/physiopathology , Aged , Female , Heart Conduction System/diagnostic imaging , Humans , Male , Myocardial Stunning/complications , Myocardial Stunning/diagnostic imaging , Positron-Emission Tomography/methods , Reproducibility of Results , Sensitivity and Specificity , Tachycardia, Ventricular/complications , Tachycardia, Ventricular/diagnostic imaging
14.
Article in English | MEDLINE | ID: mdl-28031213

ABSTRACT

BACKGROUND: Pacemapping is used to localize the exit site of ventricular arrhythmia. Although the relationship between distance and change in QRS morphology is its basis, this relationship has not been systematically quantified. METHODS AND RESULTS: Patients (n=68) undergoing ventricular arrhythmia ablation between March 2012 and July 2013 were recruited. Pacemapping was targeted to areas of voltage >0.5 mV. Linear mixed-effects models were constructed of distance against morphology difference measured by the root mean square error sum across all 12 ECG leads (E12). Forty of 68 (58%) patients had structural heart disease, and 21/40 (53%) patients were ischemic. Nine hundred thirty-five pacing points were collected, generating 6219 pacing site pair combinations (3087 [50%] ventricular bodies, 756 [12%] outflow tract, and 162 [3%] epicardial). In multivariable analysis, increase in E12 was predicted by increasing distance (0.07 per mm; 95% confidence interval 0.07-0.08; P<0.001). Compared with the left ventricle, E12 values were lower in the right ventricle (P=0.037) and left ventricular outflow tract (P<0.001) and higher in left ventricle-right ventricle pairs (P=0.021) and left ventricular epicardium (P=0.08). There was no difference in E12 in the right ventricular outflow tract compared with the right-left ventricular outflow tract (P=0.75) pairs. Structural heart disease or inadvertent pacing in scar was not associated with changes in E12; however, the presence of latency and split potentials were associated with higher and lower E12 values, respectively (P<0.001). CONCLUSIONS: A robust positive relationship exists between distance and QRS morphological change when restricting pacing points to areas of voltage >0.5 mV. Significant differences in the spatial resolution of pacemapping exist within the heart.


Subject(s)
Cardiac Pacing, Artificial , Catheter Ablation , Electrocardiography/methods , Electrophysiologic Techniques, Cardiac/methods , Tachycardia, Ventricular/physiopathology , Tachycardia, Ventricular/surgery , Cicatrix/physiopathology , Coronary Angiography , Female , Humans , Male , Middle Aged
15.
J Nucl Med ; 56 Suppl 4: 52S-58S, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26033905

ABSTRACT

UNLABELLED: Cardiac innervation is a critical component of ventricular arrhythmogenesis that can be noninvasively assessed with (123)I-MIBG. However, the effect of ventricular tachycardia (VT) ablation on global and regional left ventricular sympathetic innervation and clinical outcomes has not been previously assessed. METHODS: In this prospective, single-center feasibility study, 13 patients with cardiomyopathy (n = 9 ischemic, n = 4 nonischemic) who were scheduled to undergo ablation of drug-refractory VT underwent 15-min and 4-h (123)I-MIBG scans before and 6 mo after the ablation procedure. Planar and arrhythmia-specific 757-segment analysis of short-axis SPECT images was performed in all datasets. RESULTS: Global innervation assessed with heart-to-mediastinal ratio and washout rates was preserved in all patients at baseline (1.8 [continuous variables are expressed as median and quartile: Q1-Q3, 1.7-2.4] and 54% [Q1-Q3, 47%-67%]) and did not change significantly at the 6-mo follow-up (1.9 [Q1-Q3, 1.6-2.2], P = 0.9; and 56% [Q1-Q3, 41%-62%], P = 0.6). However, segmental analysis demonstrated that ischemic patients had larger areas of abnormal innervation at baseline (52.1% vs. 19.6%, P = 0.011) and at the 6-mo follow-up (56.7% vs. 27.5%, P = 0.011) than the nonischemic patients. Innervation defects affected 40% of the inferior segments in all ischemic cardiomyopathy patients, whereas they affected only 10% of inferior segments in 75% of nonischemic patients. When segmental data were further analyzed in denervated (DZ), transition (TZ), and normal (NZ) zones, there were changes in these designated innervation categories from baseline to the 6-mo follow-up for ischemic (19% DZ, 59% TZ, 22% NZ) and nonischemic (6% DZ, 45% TZ, 15% NZ) patients. In ischemic patients, relative changes were significantly greater in the TZ segments than in the DZ, which demonstrated the second highest proportional changes (P = 0.028). Receiver operating characteristic curves defined best cutoffs of DZ, TZ, and NZ as less than 30.5%, 30.6%-47.1%, and more than 47.1%, respectively. CONCLUSION: Patients with ischemic cardiomyopathy have larger areas of abnormal innervation than those with nonischemic cardiomyopathy. Although VT ablation did not change global innervation, a novel arrhythmia-specific segmental analysis demonstrated significant dynamic changes in innervation categories and allowed quantitative definitions of DZ, TZ, and NZ. These findings provide novel insights into the mechanics of sympathetic innervation in patients undergoing VT ablation and may have diagnostic and therapeutic implications.


Subject(s)
3-Iodobenzylguanidine , Heart/diagnostic imaging , Myocardium/pathology , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/drug therapy , Aged , Cardiomyopathies/diagnostic imaging , Feasibility Studies , Heart/innervation , Humans , Male , Middle Aged , Myocardial Ischemia/diagnostic imaging , Prospective Studies , ROC Curve , Recurrence , Time Factors , Tomography, Emission-Computed, Single-Photon
16.
Circ Arrhythm Electrophysiol ; 8(3): 583-91, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25713216

ABSTRACT

BACKGROUND: Innervation is a critical component of arrhythmogenesis and may present an important trigger/substrate modifier not used in current ventricular tachycardia (VT) ablation strategies. METHODS AND RESULTS: Fifteen patients referred for ischemic VT ablation underwent preprocedural cardiac (123)I- meta-iodobenzylguanidine ((123)I-mIBG) imaging, which was used to create 3-dimensional (3D) innervation models and registered to high-density voltage maps. 3D (123)I-mIBG innervation maps demonstrated areas of complete denervation and (123)I-mIBG transition zone in all patients, which corresponded to 0% to 31% and 32% to 52% uptake. (123)I-mIBG denervated areas were ≈2.5-fold larger than bipolar voltage-defined scar (median, 24.6% [Q1-Q3, 18.3%-34.4%] versus 10.6% [Q1-Q3, 3.9%-16.4%]; P<0.001) and included the inferior wall in all patients, with no difference in the transition/border zone (11.4% [Q1-Q3, 9.5%-13.2%] versus 16.6% [Q1-Q3, 12.0%-18.8%]; P=0.07). Bipolar/unipolar voltages varied widely within areas of denervation (0.8 mV [Q1-Q3, 0.3-1.7 mV] and 4.0 mV [Q1-Q3, 2.9-5.6 mV]) and (123)I-mIBG transition zones (0.8 mV [Q1-Q3, 0.4-1.8 mV] and 4.6 mV [Q1-Q3, 3.2-6.3 mV]). Bipolar voltages in denervated areas and (123)I-mIBG transition zones were <0.5 mV, 0.5 to 1.5 mV, and >1.5 mV in 35%, 36%, and 29%, as well as 35%, 35%, and 30%, respectively (P>0.05). Successful ablation sites were within bipolar voltage-defined scar (7%), border zone (57%), and areas of normal voltage (36%), but all ablation sites were abnormally innervated (denervation/(123)I-mIBG transition zone in 50% each). CONCLUSIONS: (123)I-mIBG innervation defects are larger than bipolar voltage-defined scar and cannot be detected with standard voltage criteria. Thirty-six percent of successful VT ablation sites demonstrated normal voltages (>1.5 mV), but all ablation sites were within the areas of abnormal innervation. (123)I-mIBG innervation maps may provide critical information about triggers/substrate modifiers and could improve understanding of VT substrate and facilitate VT ablation. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique Identifier: NCT01250912.


Subject(s)
3-Iodobenzylguanidine , Catheter Ablation , Heart Ventricles , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Radiopharmaceuticals , Sympathetic Nervous System/diagnostic imaging , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/surgery , Action Potentials , Aged , Algorithms , Baltimore , Catheter Ablation/adverse effects , Electrophysiologic Techniques, Cardiac , Feasibility Studies , Female , Heart Ventricles/diagnostic imaging , Heart Ventricles/innervation , Heart Ventricles/surgery , Humans , Male , Middle Aged , Predictive Value of Tests , Prospective Studies , Radionuclide Imaging , Sympathetic Nervous System/physiopathology , Tachycardia, Ventricular/physiopathology , Treatment Outcome
17.
Int J Cardiovasc Imaging ; 31(2): 359-68, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25352244

ABSTRACT

Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) imaging is the gold standard for myocardial scar evaluation. Heterogeneous areas of scar ('gray zone'), may serve as arrhythmogenic substrate. Various gray zone protocols have been correlated to clinical outcomes and ventricular tachycardia channels. This study assessed the quantitative differences in gray zone and scar core sizes as defined by previously validated signal intensity (SI) threshold algorithms. High quality LGE-CMR images performed in 41 cardiomyopathy patients [ischemic (33) or non-ischemic (8)] were analyzed using previously validated SI threshold methods [Full Width at Half Maximum (FWHM), n-standard deviation (NSD) and modified-FWHM]. Myocardial scar was defined as scar core and gray zone using SI thresholds based on these methods. Scar core, gray zone and total scar sizes were then computed and compared among these models. The median gray zone mass was 2-3 times larger with FWHM (15 g, IQR: 8-26 g) compared to NSD or modified-FWHM (5 g, IQR: 3-9 g; and 8 g. IQR: 6-12 g respectively, p < 0.001). Conversely, infarct core mass was 2.3 times larger with NSD (30 g, IQR: 17-53 g) versus FWHM and modified-FWHM (13 g, IQR: 7-23 g, p < 0.001). The gray zone extent (percentage of total scar that was gray zone) also varied significantly among the three methods, 51 % (IQR: 42-61 %), 17 % (IQR: 11-21 %) versus 38 % (IQR: 33-43 %) for FWHM, NSD and modified-FWHM respectively (p < 0.001). Considerable variability exists among the current methods for MRI defined gray zone and scar core. Infarct core and total myocardial scar mass also differ using these methods. Further evaluation of the most accurate quantification method is needed.


Subject(s)
Cardiomyopathies/pathology , Cicatrix/pathology , Contrast Media , Gadolinium DTPA , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Adult , Aged , Algorithms , Automation , Female , Fibrosis , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies
19.
Pacing Clin Electrophysiol ; 37(10): 1274-83, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24766563

ABSTRACT

BACKGROUND: Cardiac magnetic resonance imaging (CMRI) is the gold standard for myocardial scar evaluation. Although ideal for substrate assessment in ventricular tachycardia (VT), most patients have an implantable cardioverter-defibrillator (ICD) at presentation for ablation. This study evaluates the ICD artifact burden during standard late gadolinium enhancement CMRI (LGE-CMRI) evaluation of myocardial scar in VT patients with ICDs. METHODS: Thirty-one patients with ICD and cardiomyopathy underwent LGE-CMRI using 1.5-T magnetic resonance scanner before VT ablation. Using the American Heart Association (AHA) 17-segment model, short-axis LGE series were analyzed for artifact burden localization and assessment. RESULTS: Preablation CMRI was performed in 31 patients with single chamber (n = 13), dual chamber (n = 11), and biventricular (n = 7) ICDs. Pre- and post-MRI ICD parameters were unchanged. All patients had susceptibility artifact and 51.6% (256 of 496) of segments were affected by artifact. The artifact area (178 ± 136 cm(2) ) resulted in an artifact burden of 54 ± 21% of the LV myocardial area (327 ± 15 cm(2) ). The anterior wall was most affected by artifact (89%) compared with 52%, 49%, and 23% in the lateral, septal, and inferior walls, respectively (P < 0.0001). The apical segments had more artifact burden (66%) than the mid (49%) and basal (44%) segments (P = 0.0005). Artifact area correlated with ICD-heart distance on anteroposterior chest radiograph (r = 0.42, P = 0.021) and body mass index (r = -0.48, P = 0.008). CONCLUSIONS: Current clinical LGE-CMRI scar imaging protocols produce ICD artifacts that affect >50% of the LV myocardium and correlate with the ICD-heart distance. This significantly limits the application of CMRI for image-guided VT ablation.


Subject(s)
Artifacts , Cardiac Imaging Techniques , Catheter Ablation , Defibrillators, Implantable , Gadolinium , Magnetic Resonance Imaging , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/therapy , Female , Humans , Image Enhancement , Male , Middle Aged , Retrospective Studies
20.
Ann Thorac Surg ; 97(4): 1191-8; discussion 1198, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24582049

ABSTRACT

BACKGROUND: Only 40% of patients with atrial fibrillation (AF) undergoing cardiac surgery are treated with surgical AF correction. We prospectively studied endocardial cryoablation of the Cox-maze III lesion set following prespecified rhythm assessment with outpatient telemetry. METHODS: Between 2007 and 2011, 136 patients underwent surgical AF correction using an argon-powered cryoablation device. Patients wore continuous electrocardiogram monitoring prior to and at 6, 12, and 24 months after surgery. The average length of monitoring was 6.5±1 days prior to surgery and 11±4 days at each time point after surgery. Patients were assessed for cardiac rhythm, interval cardioversion or ablation procedures, pacemaker placement, and the use of warfarin or antiarrhythmic medications. The primary endpoint of this study was freedom from AF at 1 year. RESULTS: Mean patient age was 66±12 years, 50% (69 of 138) were male and 41% (55 of 134) had persistent AF. CryoMaze was done in conjunction with mitral valve operation in 95% (131 of 138) and other procedures in 41% (56 of 138). Follow-up was 96% complete at 1 year and 90% at 2 years. Freedom from AF was 76% at 1 year. Perioperative mortality and stroke rates were both 1.5% (2 of 138). Perioperative pacemaker implantation was required in 7% (9 of 136). In univariate analysis, younger age, female gender, decreased height and weight, smaller preoperative and postoperative left atrial diameter, intermittent AF, and freedom from AF at discharge were associated with freedom from AF at 1 year. Actuarial 2- and 4-year (Kaplan-Meier) survival were 93% and 80%, respectively. CONCLUSIONS: The CryoMaze procedure is safe and is associated with 76% freedom from AF at 1 year.


Subject(s)
Atrial Fibrillation/surgery , Cryosurgery , Telemetry , Aged , Cardiac Surgical Procedures/methods , Female , Humans , Male , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...