Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; : e202400967, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830830

ABSTRACT

Solid-supported amines having low molecular weight branched poly(ethylenimine) (PEI) physically impregnated into porous solid supports are promising adsorbents for CO2 capture. Co-impregnating short-chain poly(ethylene glycol) (PEG) together with PEI alters the performance of the adsorbent, delivering improved amine efficiency (AE, mol CO2 sorbed / mol N) and faster CO2 uptake rates. To uncover the physical basis for this improved gas capture performance, we probed the distribution and mobility of the polymers in the pores via small angle neutron scattering (SANS), solid-state NMR, and molecular dynamic (MD) simulation studies. SANS and MD simulations reveal that PEG displaces wall-bound PEI, making amines more accessible for CO2 sorption. Solid-state NMR and MD simulation suggest intercalation of PEG into PEI domains, separating PEI domains and reducing amine-amine interactions, providing potential PEG-rich and amine-poor interfacial domains that bind CO2 weakly via physisorption while providing facile pathways for CO2 diffusion. Contrary to a prior literature hypothesis, no evidence is obtained for PEG facilitating PEI mobility in solid supports. Instead, the data suggest that PEG chains coordinate to PEI, form larger bodies with reduced mobility compared to PEI alone. We also demonstrate promising CO2 uptake and desorption kinetics at varied temperatures, given by favorable amine distribution.

2.
JACS Au ; 3(1): 62-69, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36711098

ABSTRACT

Previous research has demonstrated that amine polymers rich in primary and secondary amines supported on mesoporous substrates are effective, selective sorbent materials for removal of CO2 from simulated flue gas and air. Common substrates used include mesoporous alumina and silica (such as SBA-15 and MCM-41). Conventional microporous materials are generally less effective, since the pores are too small to support low volatility amines. Here, we deploy our newly discovered zeolite nanotubes, a first-of-their-kind quasi-1D hierarchical zeolite, as a substrate for poly(ethylenimine) (PEI) for CO2 capture from dilute feeds. PEI is impregnated into the zeolite at specific organic loadings. Thermogravimetric analysis and porosity measurements are obtained to determine organic loading, pore filling, and surface area of the supported PEI prior to CO2 capture studies. MCM-41 with comparable pore size and surface area is also impregnated with PEI to provide a benchmark material that allows for insight into the role of the zeolite nanotube intrawall micropores on CO2 uptake rates and capacities. Over a range of PEI loadings, from 20 to 70 w/w%, the zeolite allows for increased CO2 capture capacity over the mesoporous silica by ∼25%. Additionally, uptake kinetics for nanotube-supported PEI are roughly 4 times faster than that of a comparable PEI impregnated in SBA-15. It is anticipated that this new zeolite will offer numerous opportunities for engineering additional advantaged reaction and separation processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...