Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38984885

ABSTRACT

We present developments for the mapping of large areas using transient grating spectroscopy (TGS) that allow for smoother, larger, autonomous measurements of material samples. The addition of a precise linear stage in the direction parallel to laser sampling coupled with signal optimizing control allows for hands free, self-correcting measurements. In addition, the simplification of the sample holding design to a form that is small enough to mount directly to the linear stage exhibits a straightforward, low-cost solution for automated TGS applications. This capability is demonstrated by taking large uninterrupted maps of gradient wafers, and the results are validated on calibrated tungsten samples and control TGS samples from gradient wafers.

3.
Materials (Basel) ; 16(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37049119

ABSTRACT

Ferritic-martensitic steels, such as T91, are candidate materials for high-temperature applications, including superheaters, heat exchangers, and advanced nuclear reactors. Considering these alloys' wide applications, an atomistic understanding of the underlying mechanisms responsible for their excellent mechano-chemical properties is crucial. Here, we developed a modified embedded-atom method (MEAM) potential for the Fe-Cr-Si-Mo quaternary alloy system-i.e., four major elements of T91-using a multi-objective optimization approach to fit thermomechanical properties reported using density functional theory (DFT) calculations and experimental measurements. Elastic constants calculated using the proposed potential for binary interactions agreed well with ab initio calculations. Furthermore, the computed thermal expansion and self-diffusion coefficients employing this potential are in good agreement with other studies. This potential will offer insightful atomistic knowledge to design alloys for use in harsh environments.

4.
Nat Commun ; 14(1): 988, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36813779

ABSTRACT

Corrosion is a ubiquitous failure mode of materials. Often, the progression of localized corrosion is accompanied by the evolution of porosity in materials previously reported to be either three-dimensional or two-dimensional. However, using new tools and analysis techniques, we have realized that a more localized form of corrosion, which we call 1D wormhole corrosion, has previously been miscategorized in some situations. Using electron tomography, we show multiple examples of this 1D and percolating morphology. To understand the origin of this mechanism in a Ni-Cr alloy corroded by molten salt, we combined energy-filtered four-dimensional scanning transmission electron microscopy and ab initio density functional theory calculations to develop a vacancy mapping method with nanometer-resolution, identifying a remarkably high vacancy concentration in the diffusion-induced grain boundary migration zone, up to 100 times the equilibrium value at the melting point. Deciphering the origins of 1D corrosion is an important step towards designing structural materials with enhanced corrosion resistance.

5.
Sci Adv ; 8(31): eabn2733, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35921408

ABSTRACT

With full knowledge of a material's atomistic structure, it is possible to predict any macroscopic property of interest. In practice, this is hindered by limitations of the chosen characterization techniques. For example, electron microscopy is unable to detect the smallest and most numerous defects in irradiated materials. Instead of spatial characterization, we propose to detect and quantify defects through their excess energy. Differential scanning calorimetry of irradiated Ti measures defect densities five times greater than those determined using transmission electron microscopy. Our experiments also reveal two energetically distinct processes where the established annealing model predicts one. Molecular dynamics simulations discover the defects responsible and inform a new mechanism for the recovery of irradiation-induced defects. The combination of annealing experiments and simulations can reveal defects hidden to other characterization techniques and has the potential to uncover new mechanisms behind the evolution of defects in materials.

6.
Rev Sci Instrum ; 92(6): 064905, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34243588

ABSTRACT

Accurate knowledge of molten salt thermophysical properties is crucial to optimize the efficiency, safety, and reliability of molten salt based energy applications. For molten fluorides, currently of high interest for fission and fusion reactors, data regarding these properties are either poor or non-existent. Thermal diffusivity and sound speed in particular play important roles in the modeling of a reactor's steady state, transient, and accident scenarios. Fluoride salt-compatible property measurement systems have thus far been the bottleneck in accurately obtaining these properties. We present the design of an optical system optimized for molten fluoride salt thermophysical property measurement, along with characterization of its thermal performance. Demonstration of system capabilities is achieved through acquisition of sound speed and thermal diffusivity in lithium chloride (LiCl), showing excellent agreement with literature data.

7.
BMC Biomed Eng ; 3(1): 10, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34099062

ABSTRACT

BACKGROUND: In response to supply shortages caused by the COVID-19 pandemic, N95 filtering facepiece respirators (FFRs or "masks"), which are typically single-use devices in healthcare settings, are routinely being used for prolonged periods and in some cases decontaminated under "reuse" and "extended use" policies. However, the reusability of N95 masks is limited by degradation of fit. Possible substitutes, such as KN95 masks meeting Chinese standards, frequently fail fit testing even when new. The purpose of this study was to develop an inexpensive frame for damaged and poorly fitting masks using readily available materials and 3D printing. RESULTS: An iterative design process yielded a mask frame consisting of two 3D printed side pieces, malleable wire links that users press against their face, and cut lengths of elastic material that go around the head to hold the frame and mask in place. Volunteers (n = 45; average BMI = 25.4), underwent qualitative fit testing with and without mask frames wearing one or more of four different brands of FFRs conforming to US N95 or Chinese KN95 standards. Masks passed qualitative fit testing in the absence of a frame at rates varying from 48 to 94 % (depending on mask model). For individuals who underwent testing using respirators with broken or defective straps, 80-100 % (average 85 %) passed fit testing with mask frames. Among individuals who failed fit testing with a KN95, ~ 50 % passed testing by using a frame. CONCLUSIONS: Our study suggests that mask frames can prolong the lifespan of N95 and KN95 masks by serving as a substitute for broken or defective bands without adversely affecting fit. Use of frames made it possible for ~ 73 % of the test population to achieve a good fit based on qualitative and quantitative testing criteria, approaching the 85-90 % success rate observed for intact N95 masks. Frames therefore represent a simple and inexpensive way of expanding access to PPE and extending their useful life. For clinicians and institutions interested in mask frames, designs and specifications are provided without restriction for use or modification. To ensure adequate performance in clinical settings, fit testing with user-specific masks and PanFab frames is required.

8.
Nat Commun ; 11(1): 3430, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32647205

ABSTRACT

The effects of ionizing radiation on materials often reduce to "bad news". Radiation damage usually leads to detrimental effects such as embrittlement, accelerated creep, phase instability, and radiation-altered corrosion. Here we report that proton irradiation decelerates intergranular corrosion of Ni-Cr alloys in molten fluoride salt at 650 °C. We demonstrate this by showing that the depth of intergranular voids resulting from Cr leaching into the salt is reduced by proton irradiation alone. Interstitial defects generated from irradiation enhance diffusion, more rapidly replenishing corrosion-injected vacancies with alloy constituents, thus playing the crucial role in decelerating corrosion. Our results show that irradiation can have a positive impact on materials performance, challenging our view that radiation damage usually results in negative effects.

9.
Rev Sci Instrum ; 91(5): 054902, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32486729

ABSTRACT

We present new developments of the laser-induced transient grating spectroscopy (TGS) technique that enable the measurement of large area 2D maps of thermal diffusivity and surface acoustic wave speed. Additional capabilities include targeted measurements and the ability to accommodate samples with increased surface roughness. These new capabilities are demonstrated by recording large TGS maps of deuterium implanted tungsten, linear friction welded aerospace alloys, and high entropy alloys with a range of grain sizes. The results illustrate the ability to view the grain microstructure in elastically anisotropic samples and to detect anomalies in samples, for example, due to irradiation and previous measurements. They also point to the possibility of using TGS to quantify grain size at the surface of polycrystalline materials.

10.
Langmuir ; 36(17): 4776-4784, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32271589

ABSTRACT

The buildup of corrosion deposits, known as fouling, seriously hinders large-scale energy production. From nuclear power plants to geothermal reservoirs, fouling increases system pressure drops, impedes heat transfer, and accelerates corrosion, leading to derating and early failure. Here, we investigate the collodial interactions between multiple foulants and coated surfaces, with the aim of discovering principles for minimizing the adhesion of foulants to them. We hypothesize that matching the full refractive index spectrum of a coating to its surrounding fluid minimizes the adhesion of all foulants entrained within and that the Lifshitz theory is sufficient to predict which materials will be multi-foulant-resistant. First-principle calculations of Hamaker constants and refractive indices of six foulants on six coatings in water correlate well to direct measurements of adhesion by atomic force microscopy (AFM)-based force spectroscopy. Amorphous 2% fluorine-doped tin oxide, crystalline SiO2, CaF2, and Na3AlF6, which all nearly match the refractive index spectrum of water, successfully resisted adhesion of six diverse foulant materials in aqueous AFM measurements. The validation of this design principle may be expanded to design multi-fouling-resistant coatings for any system in which van der Waals forces are the dominant adhesion mechanism.

11.
Nanotechnology ; 31(4): 045302, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31578000

ABSTRACT

Targeted irradiation of nanostructures by a finely focused ion beam provides routes to improved control of material modification and understanding of the physics of interactions between ion beams and nanomaterials. Here, we studied radiation damage in crystalline diamond and silicon nanostructures using a focused helium ion beam, with the former exhibiting extremely long-range ion propagation and large plastic deformation in a process visibly analogous to blow forming. We report the dependence of damage morphology on material, geometry, and irradiation conditions (ion dose, ion energy, ion species, and location). We anticipate that our method and findings will not only improve the understanding of radiation damage in isolated nanostructures, but will also support the design of new engineering materials and devices for current and future applications in nanotechnology.

12.
Proc Natl Acad Sci U S A ; 116(38): 18790-18797, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31484781

ABSTRACT

While glasses are ubiquitous in natural and manufactured materials, the atomic-level mechanisms governing their deformation and how these mechanisms relate to rheological behavior are still open questions for fundamental understanding. Using atomistic simulations spanning nearly 10 orders of magnitude in the applied strain rate we probe the atomic rearrangements associated with 3 characteristic regimes of homogeneous and heterogeneous shear flow. In the low and high strain-rate limits, simulation results together with theoretical models reveal distinct scaling behavior in flow stress variation with strain rate, signifying a nonlinear coupling between thermally activated diffusion and stress-driven motion. Moreover, we find the emergence of flow heterogeneity is closely correlated with extreme values of local strain bursts that are not readily accommodated by immediate surroundings, acting as origins of shear localization. The atomistic mechanisms underlying the flow regimes are interpreted by analyzing a distance matrix of nonaffine particle displacements, yielding evidence of various barrier-hopping processes on a fractal potential energy landscape (PEL) in which shear transformations and liquid-like regions are triggered by the interplay of thermal and stress activations.

13.
Nanoscale ; 10(4): 1598-1606, 2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29323393

ABSTRACT

Full three dimensional (3D) simulations of ion implantation are necessary in a wide range of nanoscience and nanotechnology applications to capture the increasing effect of ion leakage out of surfaces. Using a recently developed 3D Monte Carlo simulation code IM3D, we first quantify the relative error of the 1D approach in three applications of nano-scale ion implantation: (1) nano-beam for nitrogen-vacancy (NV) center creation, (2) implantation of nanowires to fabricate p-n junctions, and (3) irradiation of nano-pillars for small-scale mechanical testing of irradiated materials. Because the 1D approach fails to consider the exchange and leakage of ions from boundaries, its relative error increases dramatically as the beam/target size shrinks. Lastly, the "Bragg peak" phenomenon, where the maximum radiation dose occurs at a finite depth away from the surface, relies on the assumption of broad beams. We discovered a topological transition of the point-defect or defect-cluster distribution isosurface when one varies the beam width, in agreement with a previous focused helium ion beam irradiation experiment. We conclude that full 3D simulations are necessary if either the beam or the target size is comparable or below the SRIM longitudinal ion range.

14.
Waste Manag ; 71: 426-439, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29033018

ABSTRACT

Concrete production contributes heavily to greenhouse gas emissions, thus a need exists for the development of durable and sustainable concrete with a lower carbon footprint. This can be achieved when cement is partially replaced with another material, such as waste plastic, though normally with a tradeoff in compressive strength. This study discusses progress toward a high/medium strength concrete with a dense, cementitious matrix that contains an irradiated plastic additive, recovering the compressive strength while displacing concrete with waste materials to reduce greenhouse gas generation. Compressive strength tests showed that the addition of high dose (100kGy) irradiated plastic in multiple concretes resulted in increased compressive strength as compared to samples containing regular, non-irradiated plastic. This suggests that irradiating plastic at a high dose is a viable potential solution for regaining some of the strength that is lost when plastic is added to cement paste. X-ray Diffraction (XRD), Backscattered Electron Microscopy (BSE), and X-ray microtomography explain the mechanisms for strength retention when using irradiated plastic as a filler for cement paste. By partially replacing Portland cement with a recycled waste plastic, this design may have a potential to contribute to reduced carbon emissions when scaled to the level of mass concrete production.


Subject(s)
Carbon Footprint , Plastics , Recycling , Compressive Strength , Construction Materials
15.
Proc Natl Acad Sci U S A ; 114(52): 13631-13636, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229846

ABSTRACT

Molecular processes of creep in metallic glass thin films are simulated at experimental timescales using a metadynamics-based atomistic method. Space-time evolutions of the atomic strains and nonaffine atom displacements are analyzed to reveal details of the atomic-level deformation and flow processes of amorphous creep in response to stress and thermal activations. From the simulation results, resolved spatially on the nanoscale and temporally over time increments of fractions of a second, we derive a mechanistic explanation of the well-known variation of creep rate with stress. We also construct a deformation map delineating the predominant regimes of diffusional creep at low stress and high temperature and deformational creep at high stress. Our findings validate the relevance of two original models of the mechanisms of amorphous plasticity: one focusing on atomic diffusion via free volume and the other focusing on stress-induced shear deformation. These processes are found to be nonlinearly coupled through dynamically heterogeneous fluctuations that characterize the slow dynamics of systems out of equilibrium.

16.
Sci Rep ; 5: 18130, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26658477

ABSTRACT

SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼10(2) times faster in serial execution and > 10(4) times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the "Quick Kinchin-Pease" and "Full Cascades" options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...