Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Resuscitation ; 200: 110256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806142

ABSTRACT

BACKGROUND: Extracorporeal cardiopulmonary resuscitation (ECPR) can improve survival for refractory out-of-hospital cardiac arrest (OHCA). We sought to assess the feasibility of a proposed ECPR programme in Scotland, considering both in-hospital and pre-hospital implementation scenarios. METHODS: We included treated OHCAs in Scotland aged 16-70 between August 2018 and March 2022. We defined those clinically eligible for ECPR as patients where the initial rhythm was ventricular fibrillation, ventricular tachycardia, or pulseless electrical activity, and where pre-hospital return of spontaneous circulation was not achieved. We computed the call-to-ECPR access time interval as the amount of time from emergency medical service (EMS) call reception to either arrival at an ECPR-ready hospital or arrival of a pre-hospital ECPR crew. We determined the number of patients that had access to ECPR within 45 min, and estimated the number of additional survivors as a result. RESULTS: A total of 6,639 OHCAs were included in the geospatial modelling, 1,406 of which were eligible for ECPR. Depending on the implementation scenario, 52.9-112.6 (13.8-29.4%) OHCAs per year had a call-to-ECPR access time within 45 min, with pre-hospital implementation scenarios having greater and earlier access to ECPR for OHCA patients. We further estimated that an ECPR programme in Scotland would yield 11.8-28.2 additional survivors per year, with the pre-hospital implementation scenarios yielding higher numbers. CONCLUSION: An ECPR programme for OHCA in Scotland could provide access to ECPR to a modest number of eligible OHCA patients, with pre-hospital ECPR implementation scenarios yielding higher access to ECPR and higher numbers of additional survivors.


Subject(s)
Cardiopulmonary Resuscitation , Emergency Medical Services , Extracorporeal Membrane Oxygenation , Feasibility Studies , Out-of-Hospital Cardiac Arrest , Out-of-Hospital Cardiac Arrest/therapy , Out-of-Hospital Cardiac Arrest/mortality , Humans , Scotland/epidemiology , Cardiopulmonary Resuscitation/methods , Male , Middle Aged , Female , Emergency Medical Services/methods , Extracorporeal Membrane Oxygenation/methods , Extracorporeal Membrane Oxygenation/statistics & numerical data , Aged , Adult , Adolescent , Time-to-Treatment , Young Adult
2.
Can J Microbiol ; 69(8): 281-295, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37054443

ABSTRACT

Hamilton Harbour is an impaired embayment of Lake Ontario that experiences seasonal algal blooms despite decades of remedial efforts. To study the harbour's cyanobacterial and heterotrophic bacterial communities, we extracted and sequenced community DNA from surface water samples collected biweekly from different sites during summer and fall. Assembled contigs were annotated at the phylum level, and Cyanobacteria were further characterized at order and species levels. Actinobacteria were most abundant in early summer, while Cyanobacteria were dominant in mid-summer. Microcystis aeruginosa and Limnoraphis robusta were most abundant throughout the sampling period, expanding the documented diversity of Cyanobacteria in Hamilton Harbour. Functional annotations were performed using the MG-RAST pipeline and SEED database, revealing that genes for photosynthesis, nitrogen metabolism, and aromatic compound metabolism varied in relative abundances over the season, while phosphorus metabolism was consistent, suggesting that these genes remained essential despite fluctuating environmental conditions and community succession. We observed seasonal shifts from anoxygenic to oxygenic phototrophy, and from ammonia assimilation to nitrogen fixation, coupled with decreasing heterotrophic bacteria and increasing Cyanobacteria relative abundances. Our data contribute important insights into bacterial taxa and functional potentials in Hamilton Harbour, revealing seasonal and spatial dynamics that can be used to inform ongoing remediation efforts.


Subject(s)
Cyanobacteria , Lakes , Lakes/microbiology , Seasons , Cyanobacteria/genetics , Aquatic Organisms , Ontario
3.
Int J Sports Phys Ther ; 18(1): 262-271, 2023.
Article in English | MEDLINE | ID: mdl-36793565

ABSTRACT

Symptom modification techniques have been recently dichotomously labeled as either passive or active therapies. Active therapy such as exercise has been rightfully advocated for while "passive" therapies, mainly manual therapy have been regarded as low value within the physical therapy treatment spectrum. In sporting environments where physical activity and exercise are inherent to the athletic experience, the utilization of exercise-only strategies to manage pain and injury can be challenging when considering the demands and qualities of a sporting career which include chronically high internal and external workloads. Participation may be impacted by pain and its influence on related factors such as training and competition performance, career length, financial earning potential, educational opportunity, social pressures, influence of family, friends, and other key stakeholders of their athletic activity. Though highly polarizing viewpoints regarding different therapies create black and white "sides," a pragmatic gray area regarding manual therapy exists in which proper clinical reasoning can serve to improve athlete pain and injury management. This gray area includes both historic positive reported short-term outcomes and negative historical biomechanical underpinnings that have created unfounded dogma and inappropriate overutilization. Applying symptom modification strategies to safely allow the continuation of sport and exercise requires critical thinking utilizing not only the evidence-base, but also the multi-factorial nature of sports participation and pain management. Given the risks associated with pharmacological pain management, the cost of passive modalities like biophysical agents (electrical stimulation, photobiomodulation, ultrasound, etc), and the indications from the evidence-base when combined with active therapies, manual therapy can be a safe and effective treatment strategy to keep athletes active. Level of Evidence: 5.

5.
Sensors (Basel) ; 22(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35591088

ABSTRACT

Raman spectroscopy is an analytical technology for the simultaneous measurement of important process parameters, such as concentrations of nutrients, metabolites, and product titer in mammalian cell culture. The majority of published Raman studies have concentrated on using the technique for the monitoring and control of bioreactors at pilot and manufacturing scales. This research presents a novel approach to generating Raman models using a high-throughput 250 mL mini bioreactor system with the following two integrated analysis modules: a prototype flow cell enabling on-line Raman measurements and a bioanalyzer to generate reference measurements without a significant time-shift, compared to the corresponding Raman measurement. Therefore, spectral variations could directly be correlated with the actual analyte concentrations to build reliable models. Using a design of experiments (DoE) approach and additional spiked samples, the optimized workflow resulted in robust Raman models for glucose, lactate, glutamine, glutamate and titer in Chinese hamster ovary (CHO) cell cultures producing monoclonal antibodies (mAb). The setup presented in this paper enables the generation of reliable Raman models that can be deployed to predict analyte concentrations, thereby facilitating real-time monitoring and control of biologics manufacturing.


Subject(s)
Batch Cell Culture Techniques , Spectrum Analysis, Raman , Animals , Batch Cell Culture Techniques/methods , Bioreactors , CHO Cells , Calibration , Cricetinae , Cricetulus
6.
Appl Environ Microbiol ; 87(11)2021 05 11.
Article in English | MEDLINE | ID: mdl-33741611

ABSTRACT

Inspired by recent discoveries of the prevalence of large viruses in the environment, we reassessed the longstanding approach of filtering water through small-pore-size filters to separate viruses from cells before metagenomic analysis. We collected samples from three sites in Hamilton Harbour, an embayment of Lake Ontario, and studied 6 data sets derived from <0.45-µm- and >0.45-µm-size fractions to compare the diversity of viruses in these fractions. At the level of virus order/family, we observed highly diverse and distinct virus communities in the >0.45-µm-size fractions, whereas the <0.45-µm-size fractions were composed primarily of Caudovirales The relative abundances of Caudovirales for which hosts could be inferred varied widely between size fractions, with higher relative abundances of cyanophages in the >0.45-µm-size fractions, potentially indicating replication within cells during ongoing infections. Many viruses of eukaryotes, such as Mimiviridae, Phycodnaviridae, Iridoviridae, and Poxviridae, were detected exclusively in the often-disregarded >0.45-µm-size fractions. In addition to observing unique virus communities associated with each size fraction from every site we examined, we detected viruses common to both fractions, suggesting that these are candidates for further exploration because they could be the product of ongoing or recent lytic events. Most importantly, our observations indicate that analysis of either fraction alone provides only a partial perspective of double-stranded DNA (dsDNA) viruses in the environment, highlighting the need for more comprehensive approaches for analyzing virus communities inferred from metagenomic sequencing.IMPORTANCE Most studies of aquatic virus communities analyze DNA sequences derived from the smaller-size "free-virus" fraction. Our study demonstrates that analysis of virus communities using only the smaller-size fraction can lead to erroneously low diversity estimates for many of the larger viruses such as Mimiviridae, Phycodnaviridae, Iridoviridae, and Poxviridae, whereas analyzing only the larger->0.45-µm-size fraction can lead to underestimates of Caudovirales diversity and relative abundance. Similarly, our data show that examining only the smaller-size fraction can lead to underestimations of virophage and cyanophage relative abundances that could, in turn, cause researchers to assume their limited ecological importance. Given the considerable differences we observed in this study, we recommend cautious interpretations of environmental virus community assemblages and dynamics when based on metagenomic data derived from different size fractions.


Subject(s)
Lakes/virology , Virome , Viruses/isolation & purification , Metagenome , Ontario , Viruses/classification
7.
Int J Sports Phys Ther ; 16(1): 270-281, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33604155

ABSTRACT

Hip and groin injury (HAGI) has been reported as a source of significant time loss in elite sport. Field and court-based sports such as basketball, football, hockey, soccer, among others, require explosive multiplanar movement in single stance and high-speed change of direction. Often situations arise where sub-optimal pre-season training has occurred or congested in-season competition minimizes physiologic recovery periods between bouts of physical activity, both of which could magnify concomitant existing risk factors and increase injury risk. Identification and management of HAGI can be challenging as numerous structures within the region can be drivers of pain and injury, especially when considering the likelihood of concurrent pathology and injury reoccurrence. Focused prevention strategies have been suggested, but their practical clinical implementation has not been heavily investigated across the sporting spectrum. The purpose of this commentary is to review the historical and current state of HAGI, while focusing on applying evidence and clinical experience towards the development of future risk reduction strategies. Level of evidence: 5.

8.
Int J Sports Phys Ther ; 15(6): 1229-1234, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33344038

ABSTRACT

As clinicians strive to apply evidence-based principles, team-based practitioners have identified a large gap as it relates to published research, ideal applications of evidence-based practice, and actual clinical practice related to injury prevention in elite sport within the United States. For rehabilitation professionals, especially those intimately involved in the research of injury prevention, the solution often seems quite clear and defined. However, preventing injury by implementing the latest recommendation from the most recent prospective study on the using the FIFA 11 + warm-up, a Copenhagen Adduction exercise, or a plyometric drill with elite athletes may not be as effective as was seen among the cohort used in the study. In addition to extrapolating research, clinicians face additional challenges such as variance among professions, schedule density, and off-season contacts with athletes. There is an inherent difficulty in the application of research to practice in elite sport as it relies on the teamwork of not only the practitioner and athlete, but the entire sporting organizational structure and those involved in athlete participation. The purpose of this clinical commentary is to explore the difficulty with application of research in clinical practice and to discuss potential strategies for improving carry over from research to clinical practice.

9.
Proc Biol Sci ; 287(1937): 20202010, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33081614

ABSTRACT

The spread of infection from reservoir host populations is a key mechanism for disease emergence and extinction risk and is a management concern for salmon aquaculture and fisheries. Using a quantitative environmental DNA methodology, we assessed pathogen environmental DNA in relation to salmon farms in coastal British Columbia, Canada, by testing for 39 species of salmon pathogens (viral, bacterial, and eukaryotic) in 134 marine environmental samples at 58 salmon farm sites (both active and inactive) over 3 years. Environmental DNA from 22 pathogen species was detected 496 times and species varied in their occurrence among years and sites, likely reflecting variation in environmental factors, other native host species, and strength of association with domesticated Atlantic salmon. Overall, we found that the probability of detecting pathogen environmental DNA (eDNA) was 2.72 (95% CI: 1.48, 5.02) times higher at active versus inactive salmon farm sites and 1.76 (95% CI: 1.28, 2.42) times higher per standard deviation increase in domesticated Atlantic salmon eDNA concentration at a site. If the distribution of pathogen eDNA accurately reflects the distribution of viable pathogens, our findings suggest that salmon farms serve as a potential reservoir for a number of infectious agents; thereby elevating the risk of exposure for wild salmon and other fish species that share the marine environment.


Subject(s)
Aquaculture , DNA, Environmental , Animals , British Columbia , Environmental Monitoring , Farms , Fish Diseases , Fisheries , Salmo salar , Water Microbiology
10.
Curr Issues Mol Biol ; 39: 29-62, 2020.
Article in English | MEDLINE | ID: mdl-32073403

ABSTRACT

Algae are photosynthetic organisms that drive aquatic ecosystems, e.g. fuelling food webs or forming harmful blooms. The discovery of viruses that infect eukaryotic algae has raised many questions about their influence on aquatic primary production and their role in algal ecology and evolution. Although the full extent of algal virus diversity is still being discovered, this review summarizes current knowledge of this topic. Where possible, formal taxonomic classifications are referenced from the International Committee on Taxonomy of Viruses (ICTV); since the pace of virus discovery has far surpassed the rate of formal classification, however, numerous unclassified viruses are discussed along with their classified relatives. In total, we recognized 61 distinct algal virus taxa with highly variable morphologies that include dsDNA, ssDNA, dsRNA, and ssRNA genomes ranging from approximately 4.4 to 560 kb, with virion sizes from approximately 20 to 210nm in diameter. These viruses infect a broad range of algae and, although there are a few exceptions, they are generally lytic and highly species or strain specific. Dedicated research efforts have led to the appreciation of algal viruses as diverse, dynamic, and ecologically important members of the biosphere, and future investigations will continue to reveal the full extent of their diversity and impact.


Subject(s)
Eukaryota/virology , Phaeophyceae/virology , Virus Diseases/virology , Viruses/genetics , Animals , Ecology , Ecosystem , Genome, Viral/genetics , Humans
11.
Bioresour Technol ; 295: 122251, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31630002

ABSTRACT

Two TaqMan® qPCR assays were developed to specifically quantify the absolute abundance of Scenedesmus obliquus and Chlorella vulgaris in mixed-species algal biofilms by targeting the psbA gene. Standard curves were developed with amplification efficiencies of 92.4% and 96.6% for S. obliquus and C. vulgaris, respectively, and an R2 value of 0.99 for both. Calibration curves for estimating absolute cell abundances resulted in slopes of 0.98 and 1.11 for C. vulgaris and S. obliquus, respectively, and an R2 value of 0.95 for both. The assays were applied to cultivated mixed-species biofilms and approximately 107 cells of each algal species were quantified when 107 cells were added into biofilms. The developed qPCR assays were concluded to be specific and accurate for the quantification of S. obliquus and C. vulgaris in mixed-species biofilms. This will contribute to the control and optimization of algal cultivation systems for the production of algal biofuels and bioproducts.


Subject(s)
Chlorella vulgaris , Microalgae , Scenedesmus , Biofilms , Biofuels , Biomass , Chlorophyceae
12.
Viruses ; 11(9)2019 08 28.
Article in English | MEDLINE | ID: mdl-31466255

ABSTRACT

Aquatic viruses have been extensively studied over the past decade, yet fundamental aspects of freshwater virus communities remain poorly described. Our goal was to characterize virus communities captured in the >0.22 µm size-fraction seasonally and spatially in a freshwater harbour. Community DNA was extracted from water samples and sequenced on an Illumina HiSeq platform. Assembled contigs were annotated as belonging to the virus groups (i.e., order or family) Caudovirales, Mimiviridae, Phycodnaviridae, and virophages (Lavidaviridae), or to other groups of undefined viruses. Virophages were often the most abundant group, and discrete virophage taxa were remarkably stable across sites and dates despite fluctuations in Mimiviridae community composition. Diverse Mimiviridae contigs were detected in the samples and the two sites contained distinct Mimiviridae communities, suggesting that Mimiviridae are important algal viruses in this system. Caudovirales and Phycodnaviridae were present at low abundances in most samples. Of the 18 environmental parameters tested, only chlorophyll a explained the variation in the data at the order or family level of classification. Overall, our findings provide insight into freshwater virus community assemblages by expanding the documented diversity of freshwater virus communities, highlighting the potential ecological importance of virophages, and revealing distinct communities over small spatial scales.


Subject(s)
Biodiversity , Eutrophication , Fresh Water/virology , Viruses/isolation & purification , Chlorophyll A/analysis , Cluster Analysis , DNA, Viral/genetics , Fresh Water/chemistry , Microbiota/genetics , Viruses/classification , Viruses/genetics , Water Microbiology
14.
Front Microbiol ; 10: 703, 2019.
Article in English | MEDLINE | ID: mdl-31024489

ABSTRACT

Some giant viruses are ecological agents that are predicted to be involved in the top-down control of single-celled eukaryotic algae populations in aquatic ecosystems. Despite an increased interest in giant viruses since the discovery and characterization of Mimivirus and other viral giants, little is known about their physiology and ecology. In this study, we characterized the genome and functional potential of a giant virus that infects the freshwater haptophyte Chrysochromulina parva, originally isolated from Lake Ontario. This virus, CpV-BQ2, is a member of the nucleo-cytoplasmic large DNA virus (NCLDV) group and possesses a 437 kb genome encoding 503 ORFs with a GC content of 25%. Phylogenetic analyses of core NCLDV genes place CpV-BQ2 amongst the emerging group of algae-infecting Mimiviruses informally referred to as the "extended Mimiviridae," making it the first virus of this group to be isolated from a freshwater ecosystem. During genome analyses, we also captured and described the genomes of three distinct virophages that co-occurred with CpV-BQ2 and likely exploit CpV for their own replication. These virophages belong to the polinton-like viruses (PLV) group and encompass 19-23 predicted genes, including all of the core PLV genes as well as several genes implicated in genome modifications. We used the CpV-BQ2 and virophage reference sequences to recruit reads from available environmental metatranscriptomic data to estimate their activity in fresh waters. We observed moderate recruitment of both virus and virophage transcripts in samples obtained during Microcystis aeruginosa blooms in Lake Erie and Lake Tai, China in 2013, with a spike in activity in one sample. Virophage transcript abundance for two of the three isolates strongly correlated with that of the CpV-BQ2. Together, the results highlight the importance of giant viruses in the environment and establish a foundation for future research on the physiology and ecology CpV-BQ2 as a model system for algal Mimivirus dynamics in freshwaters.

15.
Viruses ; 10(9)2018 09 11.
Article in English | MEDLINE | ID: mdl-30208617

ABSTRACT

The scope for ecological studies of eukaryotic algal viruses has greatly improved with the development of molecular and bioinformatic approaches that do not require algal cultures. Here, we review the history and perceived future opportunities for research on eukaryotic algal viruses. We begin with a summary of the 65 eukaryotic algal viruses that are presently in culture collections, with emphasis on shared evolutionary traits (e.g., conserved core genes) of each known viral type. We then describe how core genes have been used to enable molecular detection of viruses in the environment, ranging from PCR-based amplification to community scale "-omics" approaches. Special attention is given to recent studies that have employed network-analyses of -omics data to predict virus-host relationships, from which a general bioinformatics pipeline is described for this type of approach. Finally, we conclude with acknowledgement of how the field of aquatic virology is adapting to these advances, and highlight the need to properly characterize new virus-host systems that may be isolated using preliminary molecular surveys. Researchers can approach this work using lessons learned from the Chlorella virus system, which is not only the best characterized algal-virus system, but is also responsible for much of the foundation in the field of aquatic virology.


Subject(s)
Chlorophyta/virology , Cryptophyta/virology , DNA Viruses/isolation & purification , Dinoflagellida/virology , Haptophyta/virology , RNA Viruses/isolation & purification , Rhodophyta/virology , Stramenopiles/virology , DNA Viruses/classification , DNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/genetics , Virology/methods , Virology/trends
16.
Resuscitation ; 112: 65-69, 2017 03.
Article in English | MEDLINE | ID: mdl-27638418

ABSTRACT

OBJECTIVES: Can pre-hospital paramedic responders perform satisfactory pre-hospital Echo in Life Support (ELS) during the 10-s pulse check window, and does pre-hospital ELS adversely affect the delivery of cardiac arrest care. METHODS: Prospective observational study of a cohort of ELS trained paramedics using saved ultrasound clips and wearable camera videos. RESULTS: Between 23rd June 2014 and 31st January 2016, seven Resuscitation Rapid Response Unit (3RU) paramedics attended 45 patients in Lothian suffering out-of-hospital CA where resuscitation was attempted and ELS was available and performed. 80% of first ELS attempts by paramedics produced an adequate view which was excellent/good or satisfactory in 68%. 44% of views were obtained within the 10-s pulse check window with a median time off the chest of 17 (IQR 13-20) seconds. A decision to perform ELS was communicated 67% of the time, and the 10-s pulse check was counted aloud in 60%. A manual pulse check was observed in around a quarter of patients and the rhythm on the monitor was checked 38% of the time. All decision changing scans involved a decision to stop resuscitation. CONCLUSIONS: Paramedics are able to obtain good ELS views in the pre-hospital environment but this may lead to longer hands off the chest time and possibly less pulse and monitor checking than is recommended. Future studies will need to demonstrate either improved outcomes or a benefit from identifying patients in whom further resuscitation and transportation is futile, before ELS is widely adopted in most pre-hospital systems.


Subject(s)
Advanced Cardiac Life Support/instrumentation , Echocardiography/instrumentation , Emergency Medical Services/methods , Emergency Medical Technicians/education , Out-of-Hospital Cardiac Arrest/therapy , Clinical Competence , Humans , Out-of-Hospital Cardiac Arrest/diagnostic imaging , Prospective Studies , Time Factors
17.
J Orthop Sports Phys Ther ; 46(8): 697-706, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27374014

ABSTRACT

Study Design Case report. Background Acute traumatic avulsion of the rectus abdominis and adductor longus is rare. Chronic groin injuries, often falling under the athletic pubalgia spectrum, have been reported to be more common. There is limited evidence detailing the comprehensive rehabilitation and return to sport of an athlete following surgical or conservative treatment of avulsion injuries of the pubis or other sports-related groin pathologies. Case Description A 29-year-old National Basketball Association player sustained a contact injury during a professional basketball game. This case report describes a unique clinical situation specific to professional sport, in which a surgical repair of an avulsed rectus abdominis and adductor longus was combined with a multimodal impairment- and outcomes-based rehabilitation program. Outcomes The patient returned to in-season competition at 5 weeks postoperation. Objective measures were tracked throughout rehabilitation and compared to baseline assessments. Measures such as the Copenhagen Hip and Groin Outcome Score and numeric pain-rating scale revealed progress beyond the minimal important difference. Discussion This case report details the clinical reasoning and evidence-informed interventions involved in the return to elite sport. Detailed programming and objective assessment may assist in achieving desired outcomes ahead of previously established timelines. Level of Evidence Therapy, level 4. J Orthop Sports Phys Ther 2016;46(8):697-706. Epub 3 Jul 2016. doi:10.2519/jospt.2016.6352.


Subject(s)
Basketball/injuries , Exercise Therapy/methods , Pelvic Floor/injuries , Rectus Abdominis/injuries , Rectus Abdominis/surgery , Return to Sport , Athletes , Athletic Injuries/rehabilitation , Athletic Injuries/surgery , Groin/injuries , Humans , Male , Pain Measurement , Pelvic Floor/surgery , Postoperative Period , Thigh/injuries , Time Factors , Young Adult
18.
ISME J ; 10(7): 1602-12, 2016 07.
Article in English | MEDLINE | ID: mdl-26943625

ABSTRACT

To address questions about algal virus persistence (i.e., continued existence) in the environment, rates of decay of infectivity for two viruses that infect Chlorella-like algae, ATCV-1 and CVM-1, and a virus that infects the prymnesiophyte Chrysochromulina parva, CpV-BQ1, were estimated from in situ incubations in a temperate, seasonally frozen pond. A series of experiments were conducted to estimate rates of decay of infectivity in all four seasons with incubations lasting 21 days in spring, summer and autumn, and 126 days in winter. Decay rates observed across this study were relatively low compared with previous estimates obtained for other algal viruses, and ranged from 0.012 to 11% h(-1). Overall, the virus CpV-BQ1 decayed most rapidly whereas ATCV-1 decayed most slowly, but for all viruses the highest decay rates were observed during the summer and the lowest were observed during the winter. Furthermore, the winter incubations revealed the ability of each virus to overwinter under ice as ATCV-1, CVM-1 and CpV-BQ1 retained up to 48%, 19% and 9% of their infectivity after 126 days, respectively. The observed resilience of algal viruses in a seasonally frozen freshwater pond provides a mechanism that can support the maintenance of viral seed banks in nature. However, the high rates of decay observed in the summer demonstrate that virus survival and therefore environmental persistence can be subject to seasonal bottlenecks.


Subject(s)
Chlorella/virology , Fresh Water/virology , Haptophyta/isolation & purification , Phycodnaviridae/isolation & purification , Environment , Freezing , Ponds/virology , Seasons
19.
Nat Biotechnol ; 34(3): 303-11, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26829319

ABSTRACT

Haplotyping of human chromosomes is a prerequisite for cataloguing the full repertoire of genetic variation. We present a microfluidics-based, linked-read sequencing technology that can phase and haplotype germline and cancer genomes using nanograms of input DNA. This high-throughput platform prepares barcoded libraries for short-read sequencing and computationally reconstructs long-range haplotype and structural variant information. We generate haplotype blocks in a nuclear trio that are concordant with expected inheritance patterns and phase a set of structural variants. We also resolve the structure of the EML4-ALK gene fusion in the NCI-H2228 cancer cell line using phased exome sequencing. Finally, we assign genetic aberrations to specific megabase-scale haplotypes generated from whole-genome sequencing of a primary colorectal adenocarcinoma. This approach resolves haplotype information using up to 100 times less genomic DNA than some methods and enables the accurate detection of structural variants.


Subject(s)
Haplotypes/genetics , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Sequence Analysis, DNA/methods , DNA/genetics , Genome, Human , Genomic Structural Variation , Germ Cells , Humans , Nucleic Acid Conformation , Oncogene Proteins, Fusion/genetics , Polymorphism, Single Nucleotide
20.
Resuscitation ; 93: 102-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26079791

ABSTRACT

BACKGROUND: Quality of manual cardiopulmonary resuscitation (CPR) during extrication and transport of out-of-hospital cardiac arrest victims is known to be poor. Performing manual CPR during ambulance transport poses significant risk to the attending emergency medical services crew. We sought to use pre-hospital video recording to objectively analyse the impact of introducing mechanical CPR with an extrication sheet (Autopulse, Zoll) to an advanced, second-tier cardiac arrest response team. METHODS: The study was conducted prospectively using defibrillator downloads and analysis of pre-hospital video recording to measure the quality of CPR during extrication from scene and ambulance transport of the OHCA patient. Adult patients with non-traumatic OHCA were included. The interruption to manual CPR to during extrication and to deploy the mechanical CPR device was analysed. RESULTS: In the manual CPR group, 53 OHCA cases were analysed for quality of CPR during extrication. The median time that chest compression was interrupted to allow the patient to be carried from scene to the ambulance was 270 s (IQR 201-387 s). 119 mechanical CPR cases were analysed. The median time interruption from last manual compression to first Autopulse compression was 39 s (IQR 29-47 s). The range from last manual compression to first Autopulse compression was 14-118 s. CONCLUSION: Mechanical CPR used in combination with an extrication sheet can be effectively used to improve the quality of resuscitation during extrication and ambulance transport of the refractory OHCA patient. The time interval to deploy the mechanical CPR device can be shortened with regular simulation training.


Subject(s)
Ambulances/standards , Cardiopulmonary Resuscitation , Emergency Medical Services , Out-of-Hospital Cardiac Arrest , Patient Transfer , Aged , Cardiopulmonary Resuscitation/instrumentation , Cardiopulmonary Resuscitation/methods , Cardiopulmonary Resuscitation/standards , Emergency Medical Services/methods , Emergency Medical Services/standards , Female , Humans , Male , Medical Records Systems, Computerized , Out-of-Hospital Cardiac Arrest/etiology , Out-of-Hospital Cardiac Arrest/therapy , Patient Transfer/methods , Patient Transfer/standards , Prospective Studies , Quality Assurance, Health Care , Quality Improvement , Time Factors , United Kingdom , Video Recording/instrumentation , Video Recording/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...