Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(2): e23410, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38193545

ABSTRACT

Skin wound healing is a complex and organized biological process, and the dermal fibroblasts play a crucial role. α-Catenin is known to be involved in regulating various cellular signals, and its role in wound healing remains unclear. Here, we have identified the pivotal role of the α-catenin/FAK/YAP signaling axis in the proliferation and migration of dermal fibroblasts, which contributes to the process of skin wound healing. Briefly, when α-catenin was knocked down specifically in dermal fibroblasts, the wound healing rate is significantly delayed. Moreover, interfering with α-catenin can impede the proliferation and migration of dermal fibroblasts both in vitro and in vivo. Mechanistically, the overexpression of α-catenin upregulates the nuclear accumulation of YAP and transcription of downstream target genes, resulting in enhanced the proliferation and migration of dermal fibroblasts. Furthermore, the FAK Tyr397 phosphorylation inhibitor blocked the promoting effects of α-catenin on YAP activation. Importantly, the continuous phosphorylation mutation of FAK Tyr397 reversed the retardatory effects of α-catenin knockdown on wound healing, by increasing the vitality of fibroblasts. Likewise, α-catenin/FAK was validated as a therapeutic target for wound healing in the db/db chronic trauma model. In summary, our findings have revealed a novel mechanism by which α-catenin facilitates the function of fibroblasts through the activity of the FAK/YAP signaling axis. These findings define a promising therapeutic strategy for accelerating the wound healing process.


Subject(s)
Fibroblasts , Wound Healing , alpha Catenin/genetics , Mutation , Cell Proliferation
2.
Diabetes ; 72(1): 97-111, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36256844

ABSTRACT

Studies of diabetic glomerular injury have raised the possibility of developing useful early biomarkers and therapeutic approaches for the treatment of type 2 diabetic nephropathy (T2DN). In this study, we found that FGF13 expression is induced in glomerular endothelial cells (GECs) during T2DN progression. Endothelial-specific deletion of Fgf13 potentially alleviates T2DN damage, while Fgf13 overexpression has the opposite effect. Mechanistically, Fgf13 deficiency results in improved mitochondrial homeostasis and endothelial barrier integrity in T2DN. Moreover, FGF13-sensitive alteration of Parkin safeguards mitochondrial homeostasis in endothelium of T2DN through promotion of mitophagy and inhibition of apoptosis. Additionally, it is confirmed that the beneficial effects of Fgf13 deficiency on T2DN are abolished by endothelial-specific double deletion of Fgf13 and Prkn. The effects of Fgf13 deficiency on mitophagy and apoptosis through Parkin-dependent regulation may be distinct and separable events under diabetic conditions. These data show that the bifunctional role of Fgf13 deficiency in promoting mitophagy and inhibiting apoptosis through Parkin can shape mitochondrial homeostasis regulation in GECs and T2DN progression. As a potential therapeutic target for prevention and control of T2DN, a mechanistic understanding of the biofunction of FGF13 may also be relevant to the pathogenesis of other FGF13- and Parkin-associated diseases.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Humans , Diabetic Nephropathies/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Endothelium/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Homeostasis/genetics , Diabetes Mellitus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...