Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Opt Express ; 29(2): 1879-1889, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726392

ABSTRACT

High-energy deep ultraviolet (UV) sources are required for high-density plasma diagnostics. The fifth-harmonic generation of large-aperture neodymium lasers in ammonium dihydrogen phosphate (ADP) can significantly increase UV energies due to the availability of large ADP crystals. Noncritical phase matching in ADP for (ω + 4ω) was achieved by cooling a 65 × 65-mm crystal in a two-chamber cryostat to 200 K. The crystal chamber used helium as the thermally conductive medium between the crystal and the crystal chamber, which was surrounded by a high-vacuum chamber with a liquid nitrogen reservoir. A temperature variation of 0.2 K across the crystal aperture was obtained. The total conversion efficiency from the fundamental to the fifth harmonic at 211 nm was 26%.

2.
Appl Opt ; 60(36): 11104-11124, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-35201099

ABSTRACT

The multiterawatt (MTW) laser, built initially as the prototype front end for a petawatt laser system, is a 1053 nm hybrid system with gain from optical parametric chirped-pulse amplification (OPCPA) and Nd:glass. Compressors and target chambers were added, making MTW a complete laser facility (output energy up to 120 J, pulse duration from 20 fs to 2.8 ns) for studying high-energy-density physics and developing short-pulse laser technologies and target diagnostics. Further extensions of the laser support ultrahigh-intensity laser development of an all-OPCPA system and a Raman plasma amplifier. A short summary of the variety of scientific experiments conducted on MTW is also presented.

3.
Rev Sci Instrum ; 89(10): 10G124, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399777

ABSTRACT

X-ray imaging using shaped crystals in Bragg reflection is a powerful technique used in high-energy-density physics experiments. The characterization of these crystal assemblies with conventional x-ray sources is very difficult because of the required angular resolution of the order of ∼10 µrad and the narrow bandwidth of the crystal. The 10-J, 1-ps Multi-Terawatt (MTW) laser at the Laboratory for Laser Energetics was used to characterize a set of Bragg crystal assemblies. The small spot size (of the order of 5 µm) and the high power (>1018 W/cm2) of this laser make it possible to measure the spatial resolution at the intended photon energy. A set of six crystals from two different vendors was checked on MTW, showing an unexpectedly large variation in spatial resolution of up to a factor of 4.

4.
Rev Sci Instrum ; 89(8): 083510, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30184681

ABSTRACT

A glass Cherenkov detector, called the Diagnostic for Areal Density (DAD), has been built and implemented at the OMEGA laser facility for measuring fusion gammas above 430 keV, from which remaining shell ⟨ρR⟩ abl can be determined. A proof-of-principle experiment is discussed, where signals from a surrogate gas Cherenkov detector are compared with reported values from the wedge range filter and charged particle spectrometer and found to correlate strongly. The design of the more compact port-based DAD diagnostic and results from the commissioning shots are then presented. Once absolutely calibrated, the DAD will be capable of reporting remaining shell ⟨ρR⟩ abl for plastic and glass capsules within minutes of a shot and with potentially higher precision than existing techniques.

5.
Rev Sci Instrum ; 87(11): 11D504, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910626

ABSTRACT

A high-resolving-power x-ray spectrometer has been developed for the OMEGA EP Laser System based on a spherically bent Si [220] crystal with a radius of curvature of 330 mm and a Spectral Instruments (SI) 800 Series charge-coupled device. The instrument measures time-integrated x-ray emission spectra in the 7.97- to 8.11-keV range, centered on the Cu Kα1 line. To demonstrate the performance of the spectrometer under high-power conditions, Kα1,2 emission spectra were measured from Cu foils irradiated by the OMEGA EP laser with 100-J, 1-ps pulses at focused intensities above 1018 W/cm2. The ultimate goal is to couple the spectrometer to a picosecond x-ray streak camera and measure temperature-equilibration dynamics inside rapidly heated materials. The plan for these ultrafast streaked x-ray spectroscopy studies is discussed.

6.
Rev Sci Instrum ; 87(11): 11E344, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910374

ABSTRACT

A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-ß (1s2-1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heß complex and (2) the Heα (1s2-1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heß spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.

7.
Rev Sci Instrum ; 87(11): 11D814, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910405

ABSTRACT

Upgraded microchannel-plate-based photomultiplier tubes (MCP-PMT's) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C15H11NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT's, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 106. With these enhancements, the 13.4-m nTOF can measure the D(t,n)4He and D(d,n)3He reaction yields and average ion temperatures in a single line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 109 to 1 × 1014 and the ion temperature with an accuracy approaching 5% for both the D(t,n)4He and D(d,n)3He reactions.

8.
Rev Sci Instrum ; 87(11): 11E313, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910456

ABSTRACT

A dual-channel streaked soft x-ray imager has been designed and used on high energy-density physics experiments at the National Ignition Facility. This streaked imager creates two images of the same x-ray source using two slit apertures and a single shallow angle reflection from a nickel mirror. Thin filters are used to create narrow band pass images at 510 eV and 360 eV. When measuring a Planckian spectrum, the brightness ratio of the two images can be translated into a color-temperature, provided that the spectral sensitivity of the two images is well known. To reduce uncertainty and remove spectral features in the streak camera photocathode from this photon energy range, a thin 100 nm CsI on 50 nm Al streak camera photocathode was implemented. Provided that the spectral shape is well-known, then uncertainties on the spectral sensitivity limits the accuracy of the temperature measurement to approximately 4.5% at 100 eV.

9.
Phys Rev Lett ; 117(2): 025001, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27447511

ABSTRACT

A record fuel hot-spot pressure P_{hs}=56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

10.
Rev Sci Instrum ; 87(5): 053501, 2016 05.
Article in English | MEDLINE | ID: mdl-27250417

ABSTRACT

A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium-tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments-a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ∼16 m to a streak camera in a well-shielded location. An ∼200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ∼40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.

11.
Rev Sci Instrum ; 87(5): 055110, 2016 05.
Article in English | MEDLINE | ID: mdl-27250473

ABSTRACT

A new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF's x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 µm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters were used to gate on photon energy ranges of approximately 300-510 eV and 200-400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.

12.
Rev Sci Instrum ; 86(1): 016105, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25638132

ABSTRACT

An upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 µs and a peak value of 40 kA. Compared to the original, the updated version has a larger energy storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.

13.
Rev Sci Instrum ; 85(11): 11D613, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430189

ABSTRACT

The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the Omega laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2-18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.

14.
Rev Sci Instrum ; 85(11): 11D901, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430279

ABSTRACT

A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D(3)He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D(3)He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions at the NIF.

15.
Rev Sci Instrum ; 85(11): 11E102, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430281

ABSTRACT

A new neutron time-of-flight (nTOF) detector for fuel-areal-density measurements in cryogenic DT implosions was installed on the OMEGA Laser System. The nTOF detector has a cylindrical thin-wall, stainless-steel, 8-in.-diam, 4-in.-thick cavity filled with an oxygenated liquid xylene scintillator. Four gated photomultiplier tubes (PMTs) with different gains are used to measure primary DT and D2 neutrons, down-scattered neutrons in nT and nD kinematic edge regions, and to study tertiary neutrons in the same detector. The nTOF detector is located 13.4 m from target chamber center in a well-collimated line of sight. The design details of the nTOF detector, PMT optimization, and test results on OMEGA will be presented.

16.
Rev Sci Instrum ; 85(11): 11E501, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430343

ABSTRACT

A high-performance cryogenic DT inertial confinement fusion implosion experiment is an especially challenging backlighting configuration because of the high self-emission of the core at stagnation and the low opacity of the DT shell. High-energy petawatt lasers such as OMEGA EP promise significantly improved backlighting capabilities by generating high x-ray intensities and short emission times. A narrowband x-ray imager with an astigmatism-corrected bent quartz crystal for the Si Heα line at ∼1.86 keV was developed to record backlit images of cryogenic direct-drive implosions. A time-gated recording system minimized the self-emission of the imploding target. A fast target-insertion system capable of moving the backlighter target ∼7 cm in ∼100 ms was developed to avoid interference with the cryogenic shroud system. With backlighter laser energies of ∼1.25 kJ at a 10-ps pulse duration, the radiographic images show a high signal-to-background ratio of >100:1 and a spatial resolution of the order of 10 µm. The backlit images can be used to assess the symmetry of the implosions close to stagnation and the mix of ablator material into the dense shell.

17.
Rev Sci Instrum ; 84(4): 043506, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23635195

ABSTRACT

The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

18.
Rev Sci Instrum ; 83(10): 10D309, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126836

ABSTRACT

A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

19.
Rev Sci Instrum ; 83(10): 10D919, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126921

ABSTRACT

The areal density (ρR) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative ρR measurements and 1-D simulations.

20.
Rev Sci Instrum ; 83(10): 10E119, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126941

ABSTRACT

The south pole bang-time diagnostic views National Ignition Facility (NIF) implosions through the lower Hohlraum laser entrance hole to measure the time of peak x-ray emission (peak compression) in indirect-drive implosions. Five chemical-vapor-deposition diamond photoconductive detectors with different filtrations and sensitivities record the time-varying x rays emitted by the target. Wavelength selecting highly oriented pyrolytic graphite crystal mirror monochromators increase the x-ray signal-to-background ratio by filtering for 11-keV emission. Diagnostic timing and the in situ temporal instrument response function are determined from laser impulse shots on the NIF. After signal deconvolution and background removal, the bang time is determined to 45-ps accuracy. The x-ray "yield" (mJ∕sr∕keV at 11 keV) is determined from the time integral of the corrected peak signal.

SELECTION OF CITATIONS
SEARCH DETAIL
...