Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Labelled Comp Radiopharm ; 66(2): 34-40, 2023 02.
Article in English | MEDLINE | ID: mdl-36593743

ABSTRACT

We report here the detailed radiosynthesis of [18 F]mG4P027, a metabotropic glutamate receptor 4 (mGluR4) PET radiotracer, which showed superior properties to the currently reported mGluR4 radiotracers. The radiosynthesis in the automated system has been challenging, therefore we disclose here the major limiting factors for the synthesis via step-by-step examination. And we hope this thorough study will help its automation for human use in the future.


Subject(s)
Radiopharmaceuticals , Receptors, Metabotropic Glutamate , Humans , Positron-Emission Tomography/methods , Automation , Fluorine Radioisotopes
2.
Bioorg Chem ; 124: 105804, 2022 07.
Article in English | MEDLINE | ID: mdl-35468416

ABSTRACT

A novel organomediated cleavage of benzoyl group using ethane-1,2-diamine and acetic acid under neutral condition enables an efficient synthesis of 1-(6-nitropyridin-2-yl)thiourea, which previously has been challenging to prepare by conventional methods. The successful synthesis of 1-(6-nitropyridin-2-yl)thiourea as a synthon permits development of a variety of 18F labeled heterocycles as PET imaging ligands such as N-(pyridin-2-yl)thiazol-2-amine derivatives. The utility of this synthon is demonstrated with the synthesis of a 18F-labeled PET tracer for studying prion disease. In vitro autoradiography using this PET tracer on sagittal rat brain slices showed highest accumulation of radioactivity in the hippocampus, cortex, and striatum, in accordance with reported immunostaining of PrPc in rat brain.


Subject(s)
Brain , Thiourea , Animals , Brain/diagnostic imaging , Ligands , Positron-Emission Tomography/methods , Rats
3.
Sci Rep ; 12(1): 6122, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414642

ABSTRACT

Mitochondrial dysfunction plays a key role in doxorubicin-induced cardiotoxicity (DIC). In this proof-of-principle study, we investigated whether PET mapping of cardiac membrane potential, an indicator of mitochondrial function, could detect an acute cardiotoxic effect of doxorubicin (DOX) in a large animal model. Eight Yucatan pigs were imaged dynamically with [18F](4-Fluorophenyl)triphenylphosphonium ([18F]FTPP+) PET/CT. Our experimental protocol included a control saline infusion into the left anterior descending coronary artery (LAD) followed by a DOX test infusion of either 1 mg/kg or 2 mg/kg during PET. We measured the change in total cardiac membrane potential (ΔΨT), a proxy for the mitochondrial membrane potential, ΔΨm, after the saline and DOX infusions. We observed a partial depolarization of the mitochondria following the DOX infusions, which occurred only in myocardial areas distal to the intracoronary catheter, thereby demonstrating a direct association between the exposure of the mitochondria to DOX and a change in ΔΨT. Furthermore, doubling the DOX dose caused a more severe depolarization of myocardium in the LAD territory distal to the infusion catheter. In conclusion, [18F]FTPP+ PET-based ΔΨT mapping can measure partial depolarization of myocardial mitochondria following intracoronary DOX infusion in a large animal model.


Subject(s)
Doxorubicin , Positron Emission Tomography Computed Tomography , Animals , Antibiotics, Antineoplastic/toxicity , Cardiotoxicity/diagnostic imaging , Cardiotoxicity/etiology , Disease Models, Animal , Doxorubicin/toxicity , Mitochondria, Heart , Myocytes, Cardiac , Positron-Emission Tomography
4.
J Med Chem ; 65(3): 2593-2609, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35089713

ABSTRACT

Metabotropic glutamate receptor 2 (mGluR2) is a therapeutic target for several neuropsychiatric disorders. An mGluR2 function in etiology could be unveiled by positron emission tomography (PET). In this regard, 5-(2-fluoro-4-[11C]methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridine-7-carboxamide ([11C]13, [11C]mG2N001), a potent negative allosteric modulator (NAM), was developed to support this endeavor. [11C]13 was synthesized via the O-[11C]methylation of phenol 24 with a high molar activity of 212 ± 76 GBq/µmol (n = 5) and excellent radiochemical purity (>99%). PET imaging of [11C]13 in rats demonstrated its superior brain heterogeneity and reduced accumulation with pretreatment of mGluR2 NAMs, VU6001966 (9) and MNI-137 (26), the extent of which revealed a time-dependent drug effect of the blocking agents. In a nonhuman primate, [11C]13 selectively accumulated in mGluR2-rich regions and resulted in high-contrast brain images. Therefore, [11C]13 is a potential candidate for translational PET imaging of the mGluR2 function.


Subject(s)
Contrast Media/chemistry , Picolinic Acids/chemistry , Pyrans/chemistry , Radiopharmaceuticals/chemistry , Receptors, Metabotropic Glutamate/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Carbon Radioisotopes , Contrast Media/chemical synthesis , Contrast Media/metabolism , Female , Ligands , Macaca fascicularis , Male , Picolinic Acids/chemical synthesis , Picolinic Acids/metabolism , Positron-Emission Tomography , Pyrans/chemical synthesis , Pyrans/metabolism , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/metabolism , Rats, Sprague-Dawley
5.
Sci Rep ; 11(1): 22161, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34772945

ABSTRACT

Neurodegenerative diseases are characterized by chronic neuroinflammation and may perpetuate ongoing fibrotic reactions within the central nervous system. Unfortunately, there is no therapeutic available that treats neurodegenerative inflammation and its sequelae. Here we utilize cromolyn, a mast cell inhibitor with anti-inflammatory capabilities, and its fluorinated analogue F-cromolyn to study fibrosis-related protein regulation and secretion downstream of neuroinflammation and their ability to promote microglial phagocytosis and neurite outgrowth. In this report, RNA-seq analysis shows that administration of the pro-inflammatory cytokine TNF-α to HMC3 human microglia results in a robust upregulation of fibrosis-associated genes. Subsequent treatment with cromolyn and F-cromolyn resulted in reduced secretion of collagen XVIII, fibronectin, and tenascin-c. Additionally, we show that cromolyn and F-cromolyn reduce pro-inflammatory proteins PLP1, PELP1, HSP90, IL-2, GRO-α, Eotaxin, and VEGF-Α, while promoting secretion of anti-inflammatory IL-4 in HMC3 microglia. Furthermore, cromolyn and F-cromolyn augment neurite outgrowth in PC12 neuronal cells in concert with nerve growth factor. Treatment also differentially altered secretion of neurogenesis-related proteins TTL, PROX1, Rab35, and CSDE1 in HMC3 microglia. Finally, iPSC-derived human microglia more readily phagocytose Aß42 with cromolyn and F-cromolyn relative to controls. We propose the cromolyn platform targets multiple proteins upstream of PI3K/Akt/mTOR, NF-κB, and GSK-3ß signaling pathways to affect cytokine, chemokine, and fibrosis-related protein expression.


Subject(s)
Cromolyn Sodium/pharmacology , Microglia/immunology , Microglia/metabolism , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/metabolism , Neuronal Outgrowth/drug effects , Phagocytosis/drug effects , Phagocytosis/immunology , Amyloid beta-Peptides/metabolism , Animals , Biomarkers , Cell Line , Computational Biology/methods , Cytokines/metabolism , Disease Susceptibility , Fibrosis , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Regulatory Networks , Humans , Microglia/pathology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/pathology , Peptide Fragments/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proteome , Signal Transduction/drug effects
6.
Mol Imaging Biol ; 23(4): 527-536, 2021 08.
Article in English | MEDLINE | ID: mdl-33559035

ABSTRACT

PURPOSE: Metabotropic glutamate receptor 2 (mGluR2) has been implicated in various psychiatric and neurological disorders, such as schizophrenia and Alzheimer's disease. We have previously developed [11C]7 as a PET radioligand for imaging mGluR2. Herein, [18F]JNJ-46356479 ([18F]8) was synthesized and characterized as the first 18F-labeled mGluR2 imaging ligand to enhance diagnostic approaches for mGluR2-related disorders. PROCEDURES: JNJ-46356479 (8) was radiolabeled via the copper (I)-mediated radiofluorination of organoborane 9. In vivo PET imaging experiments with [18F]8 were conducted first in C57BL/6 J mice and Sprague-Dawley rats to obtain whole body biodistribution and brain uptake profile. Subsequent PET studies were done in a cynomolgus monkey (Macaca fascicularis) to investigate the uptake of [18F]8 in the brain, its metabolic stability, as well as pharmacokinetic properties. RESULTS: JNJ-46356479 (8) exhibited excellent selectivity against other mGluRs. In vivo PET imaging studies showed reversible and specific binding characteristic of [18F]8 in rodents. In the non-human primate, [18F]8 displayed good in vivo metabolic stability, excellent brain permeability, fast and reversible kinetics with moderate heterogeneity across brain regions. Pre-treatment studies with compound 7 revealed time-dependent decrease of [18F]8 accumulation in mGluR2 rich regions based on SUV values with the highest decrease in the nucleus accumbens (18.7 ± 5.9%) followed by the cerebellum (18.0 ± 7.9%), the parietal cortex (16.9 ± 7.8%), and the hippocampus (16.8 ± 6.9%), similar to results obtained in the rat studies. However, the volume of distribution (VT) results derived from 2T4k model showed enhanced VT from a blocking study with compound 7. This is probably because of the potentiating effect of compound 7 as an mGluR2 PAM as well as related non-specific binding in the tissue data. CONCLUSIONS: [18F]8 readily crosses the blood-brain barrier and demonstrates fast and reversible kinetics both in rodents and in a non-human primate. Further investigation of [18F]8 on its binding specificity would warrant translational study in human.


Subject(s)
Brain/metabolism , Fluorodeoxyglucose F18/chemistry , Radiopharmaceuticals/chemical synthesis , Receptors, Metabotropic Glutamate/metabolism , Animals , Brain/diagnostic imaging , Fluorodeoxyglucose F18/pharmacokinetics , Ligands , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Sprague-Dawley , Tissue Distribution
7.
J Alzheimers Dis ; 80(2): 775-786, 2021.
Article in English | MEDLINE | ID: mdl-33579853

ABSTRACT

BACKGROUND: Cromolyn is an anti-neuroinflammatory modulator with a multifactorial mechanism of action that has been shown to inhibit amyloid-ß (Aß) aggregation and enhance microglial uptake and clearance of Aß. OBJECTIVE: We report the effects of fluoro-cromolyn derivatives on microglial cell toxicity and microglial clearance of Aß42. METHODS: Microglial cell toxicity for cromolyn derivatives were determined in naive BV2 microglial cells. Microglial clearance assays were performed with Aß42 in naive BV2 microglial cell line and single cell clone BV2 line expressing CD33WT. PET imaging was performed for three F-18 analogs in a rhesus macaque. RESULTS: All compounds but derivative 8 exhibited low microglial cell toxicity. Cromolyn 1 and derivatives 2, 4, and 7 displayed an increased uptake on Aß42 in naïve BV2 microglial cells. Derivative 4 increased Aß42 uptake in a dose-dependent manner and at 75µM resulted in a one-fold increase in Aß42 uptake in BV2-CD33WT. PET imaging for three [18F]cromolyn analogs revealed the order of brain tracer penetration to be 4a > 10 > 2a. Tracer 4a exhibited enhanced uptake in areas of high perfusion (putamen, grey matter, and cerebellum) and lower signal in areas of lower perfusion (caudate, thalamus, and white matter). CONCLUSION: Substantial uptake of Aß42 in both naïve BV2 and BV2-CD33WT cells observed with 4 indicate conversion of microglial cells from a pro-inflammatory to an activation state favoring Aß phagocytosis/clearance. These findings suggest that a fluoro-cromolyn analog could reduce fibril-prone Aß42in vivo and thereby serve as a therapeutic for the treatment and prevention of AD.


Subject(s)
Alzheimer Disease/drug therapy , Cromolyn Sodium/pharmacology , Microglia/drug effects , Microglia/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/drug effects , Brain/metabolism , Cell Line , Cells, Cultured , Cromolyn Sodium/metabolism , Macaca mulatta/metabolism , Mice , Neuroprotective Agents/pharmacology , Peptide Fragments/metabolism , Phagocytosis/drug effects
8.
RSC Adv ; 10(42): 25223-25227, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-33014351

ABSTRACT

A modified alcohol-enhanced 18F-fluorodeboronation has been developed for the radiosyntheses of [18F]JNJ-46356479 and [18F]FITM. Unlike the [18F]KF/K222 approach, this method tolerates the presence of sensitive heterocycles in Bpin precursors 4 and 8 allowing a one-step 18F-fluorodeboronation on the fully automated TRACERlab™ FXFN platform.

9.
J Med Chem ; 63(6): 3381-3389, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32081008

ABSTRACT

We have synthesized and characterized [18F]-N-(4-chloro-3-((fluoromethyl-d2)thio)phenyl)-picolinamide ([18F]15) as a potential ligand for the positron emission tomography (PET) imaging of mGluR4 in the brain. Radioligand [18F]15 displays central nervous system drug-like properties, including mGluR4 affinity, potent mGluR4 PAM activity, and selectivity against other mGluRs, as well as sufficient metabolic stability. Radiosynthesis was carried out in two steps. The radiochemical yield of [18F]15 was 11.6 ± 2.9% (n = 7, decay corrected) with a purity of 99% and a molar activity of 84.1 ± 11.8 GBq/µmol. Ex vivo biodistribution studies showed reversible binding of [18F]15 in all investigated tissues including the brain, liver, heart, lungs, and kidneys. PET imaging studies in male Sprague Dawley rats showed that [18F]15 accumulates in the brain regions known to express mGluR4. Pretreatment with the unlabeled mGluR4 PAM compounds 13 (methylthio analogue) and 15 showed significant dose-dependent blocking effects. These results suggest that [18F]15 is a promising radioligand for PET imaging mGluR4 in the brain.


Subject(s)
Picolines/pharmacology , Radiopharmaceuticals/pharmacology , Receptors, Metabotropic Glutamate/analysis , Animals , Brain/metabolism , Drug Stability , Fluorine Radioisotopes/chemistry , Ligands , Male , Microsomes, Liver/metabolism , Picolines/chemical synthesis , Picolines/pharmacokinetics , Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/metabolism
10.
Tetrahedron ; 75(29): 3917-3922, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-32831413

ABSTRACT

Recently [11C]mG4P012 (previously [11C]KALB012 and presently named as [11C]PXT012253 by Prexton Therapeutics) had been used as a biomarker during the preclinical development of a potential therapeutic drug, PXT0002331 (an mGluR4 PAM), for PD and L-dopa-induced dyskinesia. [11C]mG4P012 was shown to be a promising PET radioligand for mGluR4 in the monkey brain and for further development in human subjects. However, the previously reported multi-step synthesis of the thiophenol precursor suffered from low yields and difficult workup procedures. To support the translational research of [11C]mG4P012 and the other potential applications, we have developed a new route for synthesis of the thiophenol precursor and optimized the reaction conditions. The synthesis of N-(4-chloro-3-mercaptophenyl)picolinamide from 1-chloro-4-nitrobenzene has been greatly improved from 8% to 52% total yield with easy handling and in gram scales.

11.
Clin Cancer Res ; 24(23): 5925-5938, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30054282

ABSTRACT

PURPOSE: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by inactivating mutations of the TSC1 or TSC2 gene, characterized by neurocognitive impairment and benign tumors of the brain, skin, heart, and kidneys. Lymphangioleiomyomatosis (LAM) is a diffuse proliferation of α-smooth muscle actin-positive cells associated with cystic destruction of the lung. LAM occurs almost exclusively in women, as a TSC manifestation or a sporadic disorder (TSC1/TSC2 somatic mutations). Biomarkers of whole-body tumor burden/activity and response to rapalogs or other therapies remain needed in TSC/LAM. EXPERIMENTAL DESIGN: These preclinical studies aimed to assess feasibility of [18F]fluorocholine (FCH) and [18F]fluoroacetate (FACE) as TSC/LAM metabolic imaging biomarkers. RESULTS: We previously reported that TSC2-deficient cells enhance phosphatidylcholine synthesis via the Kennedy pathway. Here, we show that TSC2-deficient cells exhibit rapid uptake of [18F]FCH in vivo and can be visualized by PET imaging in preclinical models of TSC/LAM, including subcutaneous tumors and pulmonary nodules. Treatment with rapamycin (72 hours) suppressed [18F]FCH standardized uptake value (SUV) by >50% in tumors. Interestingly, [18F]FCH-PET imaging of TSC2-deficient xenografts in ovariectomized mice also showed a significant decrease in tumor SUV. Finally, we found rapamycin-insensitive uptake of FACE by TSC2-deficient cells in vitro and in vivo, reflecting its mitochondrial accumulation via inhibition of aconitase, a TCA cycle enzyme. CONCLUSIONS: Preclinical models of TSC2 deficiency represent informative platforms to identify tracers of potential clinical interest. Our findings provide mechanistic evidence for testing the potential of [18F]FCH and [18F]FACE as metabolic imaging biomarkers for TSC and LAM proliferative lesions, and novel insights into the metabolic reprogramming of TSC tumors.


Subject(s)
Lymphangioleiomyomatosis/diagnosis , Lymphangioleiomyomatosis/metabolism , Mitochondria/metabolism , Phosphatidylcholines/metabolism , Positron-Emission Tomography , Tuberous Sclerosis/diagnosis , Tuberous Sclerosis/metabolism , Aged , Animals , Biomarkers , Choline/analogs & derivatives , Disease Models, Animal , Female , Fluoroacetates , Heterografts , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Lipid Metabolism , Lymphangioleiomyomatosis/etiology , Male , Mice , Mice, Transgenic , Mitochondria/genetics , Oxygen Consumption , Positron-Emission Tomography/methods , Rats , Tuberous Sclerosis/etiology
12.
PLoS One ; 13(1): e0190968, 2018.
Article in English | MEDLINE | ID: mdl-29338024

ABSTRACT

BACKGROUND: Mitochondrial membrane potential (ΔΨm) arises from normal function of the electron transport chain. Maintenance of ΔΨm within a narrow range is essential for mitochondrial function. Methods for in vivo measurement of ΔΨm do not exist. We use 18F-labeled tetraphenylphosphonium (18F-TPP+) to measure and map the total membrane potential, ΔΨT, as the sum of ΔΨm and cellular (ΔΨc) electrical potentials. METHODS: Eight pigs, five controls and three with a scar-like injury, were studied. Pigs were studied with a dynamic PET scanning protocol to measure 18F-TPP+ volume of distribution, VT. Fractional extracellular space (fECS) was measured in 3 pigs. We derived equations expressing ΔΨT as a function of VT and the volume-fractions of mitochondria and fECS. Seventeen segment polar maps and parametric images of ΔΨT were calculated in millivolts (mV). RESULTS: In controls, mean segmental ΔΨT = -129.4±1.4 mV (SEM). In pigs with segmental tissue injury, ΔΨT was clearly separated from control segments but variable, in the range -100 to 0 mV. The quality of ΔΨT maps was excellent, with low noise and good resolution. Measurements of ΔΨT in the left ventricle of pigs agree with previous in in-vitro measurements. CONCLUSIONS: We have analyzed the factors affecting the uptake of voltage sensing tracers and developed a minimally invasive method for mapping ΔΨT in left ventricular myocardium of pigs. ΔΨT is computed in absolute units, allowing for visual and statistical comparison of individual values with normative data. These studies demonstrate the first in vivo application of quantitative mapping of total tissue membrane potential, ΔΨT.


Subject(s)
Membrane Potential, Mitochondrial , Animals , Positron-Emission Tomography , Swine
13.
Med Phys ; 44(9): 4643-4651, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28594441

ABSTRACT

PURPOSE: We have recently reported a method for measuring rest-stress myocardial blood flow (MBF) using a single, relatively short, PET scan session. The method requires two IV tracer injections, one to initiate rest imaging and one at peak stress. We previously validated absolute flow quantitation in ml/min/cc for standard bull's eye, segmental analysis. In this work, we extend the method for fast computation of rest-stress MBF parametric images. METHODS: We provide an analytic solution to the single-scan rest-stress flow model which is then solved using a two-dimensional table lookup method (LM). Simulations were performed to compare the accuracy and precision of the lookup method with the original nonlinear method (NLM). Then the method was applied to 16 single scan rest/stress measurements made in 12 pigs: seven studied after infarction of the left anterior descending artery (LAD) territory, and nine imaged in the native state. Parametric maps of rest and stress MBF as well as maps of left (fLV ) and right (fRV ) ventricular spill-over fractions were generated. Regions of interest (ROIs) for 17 myocardial segments were defined in bull's eye fashion on the parametric maps. The mean of each ROI was then compared to the rest (K1r ) and stress (K1s ) MBF estimates obtained from fitting the 17 regional TACs with the NLM. RESULTS: In simulation, the LM performed as well as the NLM in terms of precision and accuracy. The simulation did not show that bias was introduced by the use of a predefined two-dimensional lookup table. In experimental data, parametric maps demonstrated good statistical quality and the LM was computationally much more efficient than the original NLM. Very good agreement was obtained between the mean MBF calculated on the parametric maps for each of the 17 ROIs and the regional MBF values estimated by the NLM (K1mapLM  = 1.019 × K1ROINLM  + 0.019, R2  = 0.986; mean difference = 0.034 ± 0.036 mL/min/cc). CONCLUSIONS: We developed a table lookup method for fast computation of parametric imaging of rest and stress MBF. Our results show the feasibility of obtaining good quality MBF maps using modest computational resources, thus demonstrating that the method can be applied in a clinical environment to obtain full quantitative MBF information.


Subject(s)
Coronary Circulation , Coronary Vessels/diagnostic imaging , Positron-Emission Tomography , Animals , Heart Ventricles , Humans , Male , Rest , Swine
14.
Eur J Nucl Med Mol Imaging ; 44(9): 1538-1546, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28365789

ABSTRACT

PURPOSE: 18F-labeled myocardial flow agents are becoming available for clinical application but the ∼2 hour half-life of 18F complicates their clinical application for rest-stress measurements. The goal of this work is to evaluate in a pig model a single-scan method which provides quantitative rest-stress blood flow in less than 15 minutes. METHODS: Single-scan rest-stress measurements were made using 18F-Flurpiridaz. Nine scans were performed in healthy pigs and seven scans were performed in injured pigs. A two-injection, single-scan protocol was used in which an adenosine infusion was started 4 minutes after the first injection of 18F-Flurpiridaz and followed either 3 or 6 minutes later by a second radiotracer injection. In two pigs, microsphere flow measurements were made at rest and during stress. Dynamic images were reoriented into the short axis view, and regions of interest (ROIs) for the 17 myocardial segments were defined in bull's eye fashion. PET data were fitted with MGH2, a kinetic model with time varying kinetic parameters, in which blood flow changes abruptly with the introduction of adenosine. Rest and stress myocardial blood flow (MBF) were estimated simultaneously. RESULTS: The first 12-14 minutes of rest-stress PET data were fitted in detail by the MGH2 model, yielding MBF measurement with a mean precision of 0.035 ml/min/cc. Mean myocardial blood flow across pigs was 0.61 ± 0.11 mL/min/cc at rest and 1.06 ± 0.19 mL/min/cc at stress in healthy pigs and 0.36 ± 0.20 mL/min/cc at rest and 0.62 ± 0.24 mL/min/cc at stress in the ischemic area. Good agreement was obtained with microsphere flow measurement (slope = 1.061 ± 0.017, intercept = 0.051 ± 0.017, mean difference 0.096 ± 0.18 ml/min/cc). CONCLUSION: Accurate rest and stress blood flow estimation can be obtained in less than 15 min of PET acquisition. The method is practical and easy to implement suggesting the possibility of clinical translation.


Subject(s)
Myocardial Perfusion Imaging/methods , Pyridazines , Rest , Stress, Physiological , Animals , Coronary Circulation , Swine
15.
Phys Med Biol ; 62(2): 326-343, 2017 01 21.
Article in English | MEDLINE | ID: mdl-27997375

ABSTRACT

PET is an established modality for myocardial perfusion imaging (MPI) which enables quantification of absolute myocardial blood flow (MBF) using dynamic imaging and kinetic modeling. However, heart motion and partial volume effects (PVE) significantly limit the spatial resolution and quantitative accuracy of PET MPI. Simultaneous PET-MR offers a solution to the motion problem in PET by enabling MR-based motion correction of PET data. The aim of this study was to develop a motion and PVE correction methodology for PET MPI using simultaneous PET-MR, and to assess its impact on both static and dynamic PET MPI using 18F-Flurpiridaz, a novel 18F-labeled perfusion tracer. Two dynamic 18F-Flurpiridaz MPI scans were performed on healthy pigs using a PET-MR scanner. Cardiac motion was tracked using a dedicated tagged-MRI (tMR) sequence. Motion fields were estimated using non-rigid registration of tMR images and used to calculate motion-dependent attenuation maps. Motion correction of PET data was achieved by incorporating tMR-based motion fields and motion-dependent attenuation coefficients into image reconstruction. Dynamic and static PET datasets were created for each scan. Each dataset was reconstructed as (i) Ungated, (ii) Gated (end-diastolic phase), and (iii) Motion-Corrected (MoCo), each without and with point spread function (PSF) modeling for PVE correction. Myocardium-to-blood concentration ratios (MBR) and apparent wall thickness were calculated to assess image quality for static MPI. For dynamic MPI, segment- and voxel-wise MBF values were estimated by non-linear fitting of a 2-tissue compartment model to tissue time-activity-curves. MoCo and Gating respectively decreased mean apparent wall thickness by 15.1% and 14.4% and increased MBR by 20.3% and 13.6% compared to Ungated images (P < 0.01). Combined motion and PSF correction (MoCo-PSF) yielded 30.9% (15.7%) lower wall thickness and 82.2% (20.5%) higher MBR compared to Ungated data reconstructed without (with) PSF modeling (P < 0.01). For dynamic PET, mean MBF across all segments were comparable for MoCo (0.72 ± 0.21 ml/min/ml) and Gating (0.69 ± 0.18 ml/min/ml). Ungated data yielded significantly lower mean MBF (0.59 ± 0.16 ml/min/ml). Mean MBF for MoCo-PSF was 0.80 ± 0.22 ml/min/ml, which was 37.9% (25.0%) higher than that obtained from Ungated data without (with) PSF correction (P < 0.01). The developed methodology holds promise to improve the image quality and sensitivity of PET MPI studies performed using PET-MR.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Movement , Myocardial Perfusion Imaging/methods , Myocardium/pathology , Positron-Emission Tomography/methods , Animals , Swine
16.
J Nucl Med ; 58(3): 484-491, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27660144

ABSTRACT

18F-T807 is a PET radiotracer developed for imaging tau protein aggregates, which are implicated in neurologic disorders including Alzheimer disease and traumatic brain injury (TBI). The current study characterizes 18F-T807 pharmacokinetics in human subjects using dynamic PET imaging and metabolite-corrected arterial input functions. Methods: Nine subjects (4 controls, 3 with a history of TBI, 2 with mild cognitive impairment due to suspected Alzheimer disease) underwent dynamic PET imaging for up to 120 min after bolus injection of 18F-T807 with arterial blood sampling. Total volume of distribution (VT) was estimated using compartmental modeling (1- and 2-tissue configurations) and graphical analysis techniques (Logan and multilinear analysis 1 [MA1] regression methods). Reference region-based methods of quantification were explored including Logan distribution volume ratio (DVR) and static SUV ratio (SUVR) using the cerebellum as a reference tissue. Results: The percentage of unmetabolized 18F-T807 in plasma followed a single exponential with a half-life of 17.0 ± 4.2 min. Metabolite-corrected plasma radioactivity concentration fit a biexponential (half-lives, 18.1 ± 5.8 and 2.4 ± 0.5 min). 18F-T807 in gray matter peaked quickly (SUV > 2 at ∼5 min). Compartmental modeling resulted in good fits, and the 2-tissue model with estimated blood volume correction (2Tv) performed best, particularly in regions with elevated binding. VT was greater in mild cognitive impairment subjects than controls in the occipital, parietal, and temporal cortices as well as the posterior cingulate gyrus, precuneus, and mesial temporal cortex. High focal uptake was found in the posterior corpus callosum of a TBI subject. Plots from Logan and MA1 graphical methods became linear by 30 min, yielding regional estimates of VT in excellent agreement with compartmental analysis and providing high-quality parametric maps when applied in voxelwise fashion. Reference region-based approaches including Logan DVR (t* = 55 min) and SUVR (80- to 100-min interval) were highly correlated with DVR estimated using 2Tv (R2 = 0.97, P < 0.0001). Conclusion:18F-T807 showed rapid clearance from plasma and properties suitable for tau quantification with PET. Furthermore, simplified approaches using DVR (t* = 55 min) and static SUVR (80-100 min) with cerebellar reference tissue were found to correlate highly with compartmental modeling outcomes.


Subject(s)
Brain/metabolism , Carbolines/pharmacokinetics , Molecular Imaging/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , tau Proteins/metabolism , Adult , Aged , Carbolines/blood , Computer Simulation , Humans , Metabolic Clearance Rate , Middle Aged , Models, Biological , Organ Specificity , Radiopharmaceuticals/blood , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
17.
Ann Neurol ; 79(1): 110-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26505746

ABSTRACT

OBJECTIVE: Detection of focal brain tau deposition during life could greatly facilitate accurate diagnosis of Alzheimer disease (AD), staging and monitoring of disease progression, and development of disease-modifying therapies. METHODS: We acquired tau positron emission tomography (PET) using (18)F T807 (AV1451), and amyloid-ß PET using (11)C Pittsburgh compound B (PiB) in older clinically normal individuals, and symptomatic patients with mild cognitive impairment or mild AD dementia. RESULTS: We found abnormally high cortical (18)F T807 binding in patients with mild cognitive impairment and AD dementia compared to clinically normal controls. Consistent with the neuropathology literature, the presence of elevated neocortical (18)F T807 binding particularly in the inferior temporal gyrus was associated with clinical impairment. The association of cognitive impairment was stronger with inferior temporal (18)F T807 than with mean cortical (11)C PIB. Regional (18)F T807 was correlated with mean cortical (11)C PiB among both impaired and control subjects. INTERPRETATION: These findings suggest that (18)F T807 PET could have value as a biomarker that reflects both the progression of AD tauopathy and the emergence of clinical impairment.


Subject(s)
Aging/metabolism , Alzheimer Disease/metabolism , Carbolines/metabolism , Cerebral Cortex/metabolism , Cognitive Dysfunction/metabolism , Positron-Emission Tomography/methods , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Aniline Compounds , Biomarkers/metabolism , Cognitive Dysfunction/physiopathology , Female , Humans , Male , Middle Aged , Temporal Lobe/metabolism , Thiazoles
18.
ACS Med Chem Lett ; 6(9): 1025-9, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26396692

ABSTRACT

Zinc, copper, and iron ions are involved in amyloid-beta (Aß) deposition and stabilization in Alzheimer's disease (AD). Consequently, metal binding agents that prevent metal-Aß interaction and lead to the dissolution of Aß deposits have become well sought therapeutic and diagnostic targets. However, direct intervention between diseases and metal abnormalities has been challenging and is partially attributed to the lack of a suitable agent to determine and modify metal concentration and distribution in vivo. In the search of metal ionophores, we have identified several promising chemical entities by strategic fluorination of 8-hydroxyquinoline drugs, clioquinol, and PBT2. Compounds 15-17 and 28-30 showed exceptional metal ionophore ability (6-40-fold increase of copper uptake and >2-fold increase of zinc uptake) and inhibition of zinc induced Aß oligomerization (EC50s < ∼5 µM). These compounds are suitable for further development as drug candidates and/or positron emission tomography (PET) biomarkers if radiolabeled with (18)F.

19.
Clin Cancer Res ; 21(6): 1340-7, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25609068

ABSTRACT

PURPOSE: Estrogen receptor (ER) targeting is key in management of receptor-positive breast cancer. Currently, there are no methods to optimize anti-ER therapy dosing. This study assesses the use of 16α-(18)F-fluoroestradiol ((18)F-FES) PET for fulvestrant dose optimization in a preclinical ER(+) breast cancer model. EXPERIMENTAL DESIGN: In vitro, (18)F-FES retention was compared with ERα protein expression (ELISA) and ESR1 mRNA transcription (qPCR) in MCF7 cells (ER(+)) after treatment with different fulvestrant doses. MCF7 xenografts were grown in ovariectomized nude mice and assigned to vehicle, low- (0.05 mg), medium- (0.5 mg), or high-dose (5 mg) fulvestrant treatment groups (5-7 per group). Two and 3 days after fulvestrant treatment, PET/CT was performed using (18)F-FES and (18)F-FDG, respectively. ER expression was assessed by immunohistochemistry, ELISA, and qPCR on xenografts. Tumor proliferation was assessed using Ki67 immunohistochemistry. RESULTS: In vitro, we observed a parallel graded reduction in (18)F-FES uptake and ER expression with increased fulvestrant doses, despite enhancement of ER mRNA transcription. In xenografts, ER expression significantly decreased with increased fulvestrant dose, despite similar mRNA expression and Ki67 staining among the treatment groups. We observed a significant dose-dependent reduction of (18)F-FES PET mean standardized uptake value (SUV(mean)) with fulvestrant treatment but no significant difference among the treatment groups in (18)F-FDG PET SUV(mean). CONCLUSIONS: We demonstrated that (18)F-FES uptake mirrors the dose-dependent changes in functional ER expression with fulvestrant resulting in ER degradation and/or blockade; these precede changes in tumor metabolism and proliferation. Quantitative (18)F-FES PET may be useful for tracking early efficacy of ER blockade/degradation and guiding ER-targeted therapy dosing in patients with breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Estradiol/analogs & derivatives , Estradiol/metabolism , Estrogen Receptor Antagonists/pharmacology , Receptors, Estrogen/metabolism , Animals , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/diagnostic imaging , Cell Line, Tumor , Estradiol/pharmacology , Female , Fulvestrant , Humans , MCF-7 Cells , Mice , Mice, Nude , Positron-Emission Tomography/methods , Xenograft Model Antitumor Assays
20.
J Biol Chem ; 290(4): 1966-78, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25468905

ABSTRACT

Interfering with the assembly of Amyloid ß (Aß) peptides from monomer to oligomeric species and fibrils or promoting their clearance from the brain are targets of anti-Aß-directed therapies in Alzheimer disease. Here we demonstrate that cromolyn sodium (disodium cromoglycate), a Food and Drug Administration-approved drug already in use for the treatment of asthma, efficiently inhibits the aggregation of Aß monomers into higher-order oligomers and fibrils in vitro without affecting Aß production. In vivo, the levels of soluble Aß are decreased by over 50% after only 1 week of daily intraperitoneally administered cromolyn sodium. Additional in vivo microdialysis studies also show that this compound decreases the half-life of soluble Aß in the brain. These data suggest a clear effect of a peripherally administered, Food and Drug Administration-approved medication on Aß economy, supporting further investigation of the potential long-term efficacy of cromolyn sodium in Alzheimer disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Cromolyn Sodium/pharmacology , Drug Approval , Peptide Fragments/metabolism , Animals , Cells, Cultured , Cromolyn Sodium/chemistry , Disease Models, Animal , Flavonoids/chemistry , Flavonols , Humans , Mice , Mice, Transgenic , Microglia/metabolism , Microscopy, Electron, Transmission , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...